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An attacker who controls a computer in an overlay network can effectively control the entire overlay network
if the mechanism managing membership information can successfully be targeted. This article describes
Fireflies, an overlay network protocol that fights such attacks by organizing members in a verifiable pseudo-
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1. INTRODUCTION

Overlay networks are essential to several Internet services. For instance, Spotify
[Kreitz and Niemelä 2010], a popular commercial music streaming application, uses
an unstructured Gnutella-like [Chasin 2001] Peer-to-Peer (P2P) overlay to offload data
distribution from its central music repositories to the client machines; BitTorrent, a
popular file-sharing application, uses a P2P Distributed Hash Table (DHT) structure
[Wolchok and Halderman 2010] to map file identifiers to swarms of peers sharing those
files; and Tor [Dingledine et al. 2004] uses an overlay of relay servers to provide private
and secure Internet communication.
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Several papers have discussed the problem of Byzantine failures within overlay net-
works, including those of Douceur [2002], Sit and Morris [2002], Srivatsa and Liu
[2004], Bortnikov et al. [2008], and Urdaneta et al. [2011]. A key observation is that
errors in the mechanism that maintains membership information can cripple any
higher-level effort to provide fault tolerance, particularly if induced systematically by
a hostile intruder attacking the system [Singh et al. 2004]. Possible faults or attacks
include falsely reporting correct members as crashed, falsely reporting crashed mem-
bers as live, and biasing the overlay topology so that correct clients unknowingly prefer
communicating with the attacker, a so-called eclipse attack [Singh et al. 2004].

These security and reliability problems are a major obstacle to deploying new Inter-
net applications based on overlay networks. For example, the DPoll protocol relies on an
overlay network to provide decentralized polling for social networks [Guerraoui et al.
2012], but cannot be deployed without a secure overlay substrate. Many applications
would benefit from deploying P2P key-value stores, such as Cassandra [Lakshman and
Malik 2010] and Dynamo [DeCandia et al. 2007], but such systems cannot survive even
simple attacks.

In this article, we describe an overlay network called Fireflies,1 which combines full
membership with a pseudorandom structure to provide a novel and practical trade-
off between tolerance to Byzantine faults and scalability. Fireflies provides its correct
members with a membership view that includes all members that have been correct for
sufficiently long and excludes all members that have stopped executing for sufficiently
long. Fireflies also provides a low-diameter communication graph on the members that
guarantees, with high probability, that the subgraph of correct members is connected.
This graph is ideally suited for gossiping among the correct members.

Membership protocols that maintain full views have been shunned in the past as
building blocks for P2P file-sharing networks and DHT services because the rate of
membership events will likely grow linearly with the number of members, possibly
leading to unmanageable volumes of network traffic. However, by maintaining full
membership views, applications built on top of Fireflies can send messages directly
to their destinations. We can thus avoid the complex techniques required for secure
and reliable overlay routing [Urdaneta et al. 2011], and the overlay need not be re-
structured dynamically to runtime metrics like network proximity [Gummadi et al.
2003]. Many applications have relatively static membership and thus maintaining
full membership views is both possible and desirable [Lakshman and Malik 2010;
DeCandia et al. 2007; Rodrigues and Blake 2004; Kreitz and Niemelä 2010; Gupta
et al. 2003].

The current article extends a prior publication by Johansen et al. [2006], providing
significantly more details on the mechanics, analysis, and implementation of the pro-
tocol. The exposition benefits from practical experience with building applications on
Fireflies.

2. BACKGROUND

An overlay network is a virtual packet processing and routing substrate built on top of
some existing network infrastructure like the Internet or, recursively, on top of another
overlay network. An overlay network is constructed from a subset of the members in the
underlying network. Its links are logical in that they can be made up of multiple links
in the underlying network and exist only as part of the overlay state. Overlay networks

1Fireflies, the bioluminescent family of winged beetles, model not only the on/off behavior of members, but
like Byzantine members they are also known for their aggressive mimicry in order to dupe and devour
related species.
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are commonly represented as a graph where the vertices are member processes and
the edges are communication links.

2.1. System Model

Overlays are dynamic and processes may join the overlay becoming members, and
existing members may permanently leave. Each member is either correct, crashed,
or corrupt. Correct members faithfully execute the specified overlay protocol, while
crashed members do not execute any protocol steps. Corrupt members are not bound
by the protocol and might execute arbitrary instructions. For convenience, we refer to
members that are either correct or crashed as honest, and to members that are correct
or corrupt as live. Members that are not correct are often called Byzantine. Note that
crashed members are considered Byzantine, but not corrupt.

Members may switch between being live and crashed, which is commonly referred to
as churn. Correct members may be unreachable and appear crashed to other members
due to transient network outages. Corrupt members can disguise themselves as correct
members by executing the protocol, or as crashed members by not executing at all.
Generally, correct members cannot determine which members are corrupt unless they
reveal themselves as such by sending messages that prove that they are not following
the protocol.

Every correct member m has a unique identifier m.id, a view m.view containing
the identifiers for other members participating in the overlay network, and a set of
members believed to be live, m.live ⊆ m.view. Assuming m is correct,

—m′.id ∈ m.live means that m considers that m′ was live, at least until recently. The
converse,

—m′.id /∈ m.live, implies that m considers m′ to be crashed, at least until recently.

Also, m has a set of neighbors, m.neighbors, which is a subset of m.live. In this article,
we assume that each correct member m can connect to every other correct member in
m.neighbors. This assumption can be relaxed, but calculated tolerance thresholds have
to be adjusted accordingly. The views and set of neighbors of correct members have the
following properties with high probability:

Agreement. If a member m is in the view of some other correct member m′, then,
within bounded time, m will also be in the views of every other correct member.

Validity. The view includes the identifiers of all members that have been correct suf-
ficiently long, and excludes the identifiers of all members that have been crashed
sufficiently long (sufficiently long will be made more precise in the following).

Connectivity. The set of correct members form a connected subgraph of neighbors.
Scalability. The number of neighbors is logarithmic in the size of the member-

ship, and the diameter of the neighbor graph is logarithmic in the size of the
membership.

2.2. Attack Model

We make few assumptions on the capabilities of an attacker. Corrupt members can
deviate arbitrarily from the Fireflies protocol. They can collude and share state, and
they can also know the state of honest members. In order to create a protocol that can
work in the presence of corrupt members, we make the following basic assumptions:

—Corrupt members do not have sufficient computational power to break cryptographic
building blocks. In particular, we assume that they cannot forge public key certificates
or public key signatures of honest members.
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—Trivial Denial-of-Service (DoS) attacks like flooding can be detected and suppressed
using techniques such as port randomization, careful resource management, and
rate limiting [Badishi et al. 2006].

—Correct members have access to clocks running with a bounded difference to real
time.

—Correct members can exchange and process messages within a known bounded time
interval.

Further, we do not consider attacks on the systems and services colocated with the
overlay network. This includes attacks that exhaust local bandwidth by targeting other
services located on the same subnet as one or more overlay members, attacks on the
software repository, the human operators, and the social structures within which the
overlay network resides.

If an attacker is able to acquire control over a large number of identities, an overlay
is at risk of being compromised. The forging of multiple identities in order to gain
control of a system is often referred to as a Sybil attack [Douceur 2002]. Overlays are
susceptible to such attacks unless we limit the fraction of corrupt members within the
overlay network as a whole, as well as within any subset of the members selected for
particular tasks. For instance, in OceanStore [Kubiatowicz et al. 2000], the number of
Byzantine members (that is, crashed or corrupt) within each primary replication group
must be less than one-third.

Various approaches have been proposed for dealing with Sybil attacks, including
packet latency triangulation [Bazzi and Konjevod 2005], credit payment schemes on
top of social networks [Viswanath et al. 2012], client puzzles [Juels and Brainard 1999],
and physical artifacts like smart cards [Druschel and Rowstron 2001]. Although these
systems make it harder for an attacker to accumulate and control a large number of
overlay-network identities, they cannot prevent an attacker from joining the overlay.

In this article, we assume some oracle Certificate Authority (CA) service that as-
signs identities to members so that there is a bounded probability, pcorrupt, that any
randomly chosen live member is corrupt. This is a stronger condition than a bound on
the probability that any member is corrupt. The weaker condition is not sufficient as
the situation where most honest members are crashed, while most corrupt members
remain live is similar to a Sybil attack. Nonetheless, the assumption that among all
live members only a fraction is corrupt is reasonable, particularly since we do not limit
the fraction of crashed members among all members.

3. MEMBERSHIP MAINTENANCE

Fireflies organizes members into a pseudorandom mesh structure that dictates neigh-
bor selection. To maintain this structure, members monitor one another using an adap-
tive crash detection protocol and issue accusations whenever a member is suspected
to have crashed. When a member m receives an accusation for some other member
m′, m waits a time period of length 2� before removing m′ from m.live, where � is a
probabilistic upper bound on end-to-end latency of notices sent on the overlay. Should
m′ receive an accusation about itself, then m′ has the opportunity to issue a rebuttal
before the timeout of 2� expires, which will invalidate any previous accusations for
m′. Fireflies strives to make the set of accusations empty for correct members and
nonempty for crashed members.

Members broadcast recent accusations and rebuttals using a secure gossip chan-
nel. Correct membership depends on the ability of this channel to deliver messages to
correct members within � time, even in the presence of corrupt members. In turn, Fire-
flies depends on the correct membership views to ensure that gossip reaches all correct
members with high probability. To navigate the narrative complexity of this circular
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Fig. 1. Data types.

dependency, the remainder of this section describes the mechanisms and rules govern-
ing membership maintenance, assuming the existence of some appropriate broadcast
channel. Section 4 describes how Fireflies constructs its gossip mesh.

3.1. Data Structures

Each correct member m maintains three local datasets: m.notes, m.accusations, and
m.timeouts. Correct members exchange notes and accusations with their neighbors
through gossip so that every member eventually will have the same set. The set of
timeouts is kept local to each member. The following data structures are used:

Certificate. Public-key certificates are used to uniquely identify member processes.
A certificate Cm = (public key, address, signature) binds m’s public key to the network
address where it can be reached. In practice, other fields like start and expiry dates are
also included in certificates, but their functions are not required for the description of
our protocol and will therefore be omitted here. To be valid, the binding must be signed
by the trusted CA oracle. By assumption, honest members never reveal their private
keys.

Note. A note N i
m = (Cm, epoch, mask, signature) is the ith signal from member m

that it is alive, where Cm is the certificate for m, epoch is a monotonically increasing
number, and mask is a bitmap used to prevent repeated false accusations, which will
be described later. The epoch numbers impose a total ordering of the notes from each
member such that N i

m > N j
m ⇔ i > j. In this case, we say that N i

m is more recent than
N j

m. When clear from the context, we will use the notation Nm to denote the most recent
note of m observed by some member. The set m.notes of a correct member m eventually
holds the most recent note for each participating honest member in the overlay.

Accusation. An accusation A[m]i
m′ = (Cm′ ,N i

m, signature) states that member m′ sus-
pects that some other member m has crashed, and N i

m is the most recent note for m
known to m′. The accusation is signed with the private key of m′. The set m.accusations
of a correct member meventually holds entries for each accused member in the overlay.

Timeout. A timeout T [m]i
m′ = (Cm′ ,N i

m, time stamp) indicates the time when member
m′ first observed an accusation for note N i

m of member m. The set m.timeouts of a correct
member m contains at most one entry for each member in the overlay. A summary of
these data structures is provided in Figure 1.

3.2. Data Validity Rules

Fireflies defines the following set of rules that a correct member follows to determine
the validity of each data item it has:

RULE 1 (CORRECT SIGNATURES). Note N i
m or accusation A[m′]i

m is only valid if it is
signed correctly with the private key for Cm, and Cm is correctly signed by a common
trusted CA.
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RULE 2. Note N i
m is only valid if it is the most recent observed note from m.

RULE 3. Accusation A[m]i
m′ is only valid if the contained note N i

m is valid.

RULE 4. Timeout T [m]i
m′ is only valid if there exists a valid accusation A[m]i

m′ .

In addition, members adhere to the following decrees:

RULE 5 (REBUTTALS). A correct member m, upon receiving a valid accusation A[m]i
m′

for its own note, will immediately create and gossip a new note N i+1
m . This note will

eventually invalidate any previous accusations for m at all other correct members.

Due to the probabilistic upper bound � on broadcasting messages in our gossip
protocol, as will be discussed in Section 4, a correct member m will receive any valid
accusation A[m]i

m′ within � time and, following Rule 5, issue a rebuttal N i+1
m . With

high probability, this rebuttal will be received by all correct members within at most
2� time since A[m]i

m′ was issued. Hence, no correct member m′ will have a timeout
T [m]i

m′ that is more than 2� old. If m had indeed crashed, no rebuttal to A[m]i
m′ would

be issued. This gives us the following definition for determining crashes:

Definition 3.1 (Crashes). A correct member m considers member m′ crashed if, and
only if, m has a local timeout T [m′]i

m that is valid according to Rule 4 and older than
2�. Otherwise, m considers m′ live.

To attack this protocol, a corrupt member might refrain from issuing accusations
for crashed members in an attempt to keep them in views of correct members. Conse-
quently, we must make sure that all members are monitored by at least one correct
peer member, a so-called monitor. However, there is a network overhead associated
with monitoring so we also want to minimize the number of monitors assigned to each
member. We also have to prevent corrupt members from increasing network load by
submitting frequent accusations about correct members. This is a complicated issue
because correct members might also accidentally accuse other correct members due to,
for instance, transient link failures. Thus, not every false accusation is from a corrupt
member. In the following sections we will describe how Fireflies implements monitoring
to resolve these issues.

3.3. Membership Rings

To assign monitoring responsibilities, Fireflies organizes all members in a pseudoran-
dom mesh structure made up of k membership rings. Each such ring is a subgraph of
the mesh in which each member m has exactly two other neighbors (assuming there
are at least three members in the overlay). More formally, a membership ring r is
characterized by the pair (M, id) where M represents the set of members and id is a
unique ring identifier known to all members. The set of edges connecting the members
in r is derived deterministically from M and id. For this, we impose a total ordering,
≺r, on the members, which is specific to each ring r. The ordering function H is specified
by applying a Secure Hash Algorithm (SHASH) on the concatenation (‖ symbol) of the
members’ identities and ring identity in the following manner:

H(m, r) = SHASH(m.id ‖ r.id). (1)

The SHASH function is required to provide a large address space with a low probability
of collision. Hence, H defines a total ordering on the set of members that is different
than the ordering of their identities. Given the two members m and m′, the ordering is
defined as

m ≺r m′ ⇔ H(m, r) < H(m′, r). (2)
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Fig. 2. A Fireflies membership ring.

Fig. 3. Fireflies mesh with three rings.

There is an edge in r between all members that are adjacent by this ordering. Also,
because ≺r is not circular, we include an edge between the highest member and the
lowest member. More formally, there exists an edge from m to m′ if and only if m ≺r m′
and there exists no member m′′ such that m ≺r m′′ ≺r m′. If m �r m′, then there exists
an edge between them if and only if there is no member m′′ such that m′′ �r m and no
member m′′′ such that m′′′ ≺r m′. This results in a 2-connected Harary graph [Harary
1962], or a ringlike structure as seen in Figure 2.

In each ring r we define the following relations:

—successorr(m) = m′. We say that m′ is the successor of m in ring r if there exists an
edge between m and m′ and either m ≺r m′ or there exists no m′′ such that m′′ �r m.
Each member has exactly one successor in r.

—predecessorr(m) = m′. We say that m′ is the predecessor of m in ring r if there exists
an edge between mand m′ and either m �r m′ or there exists no m′′ such that m′′ ≺r m.
Each member has exactly one predecessor in r.

—rankr(m, m′) = x. The rank relation adds transitive properties to the successor rela-
tionships so that there are exactly x successor edges connecting m and m′ in ring r.
In this case, we may also say that m′ is m’s xth successor.

As an example, consider the seven members A through G in Figure 2, each mapped
by the secure hashing function to a pseudorandom position in the circular address
space of the ring r. Then the successor of B is C since C is the next clockwise member
from B. We also have rankr(B, D) = 3 since there are exactly three successor edges
between B and D.

By combining k rings, each with a different ring identifier, each member m will be
assigned up to k pseudorandom predecessors and up to k pseudorandom successors.
By having each member monitor its successors in this set of rings, we can assign up
to k pseudorandom monitors to each member. The number of rings, k, can be adjusted
to trade attack resilience with network overhead. As an example, consider the seven
members A through G in Figure 3, securely hashed into three rings. The successors of
B, one for each ring, are {C, G, E}, and its predecessors are {A, F, D}.

Due to the randomization of the H function and the assignment of random member
identities using a trusted CA, each neighbor of member m is assumed to have a uniform
and independent probability pcorrupt of being corrupt. Hence, the probability on the
number of corrupt monitors of m has a binomial distribution.
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Let X denote the binomial distributed random variable of the number of correct
monitors of m in a mesh of k rings. The probability P[X = t] that m has exactly t out of
k corrupt monitors is given by the binomial probability density function:

P[X = t | k] =
(

k
t

)
pcorrupt

t(1 − pcorrupt)k−t, t = 0, 1, . . . , k. (3)

The probability of a member m having no correct monitor can then be found by setting
x = k, which gives

P[X = k | k] =
(

k
k

)
pcorrupt

k(1 − pcorrupt)k−k = pcorrupt
k. (4)

For example, if k = 7 rings are used and pcorrupt = 0.10, then the probability of m
having no correct monitor becomes 10−7. Hence, even a few rings can ensure that each
member has at least one correct monitor with high probability. A single correct monitor
is sufficient to ensure that if mcrashes, it will eventually be detected and subsequently
excluded from the views of correct members. However, having a large number of rings
does not prevent m from having corrupt monitors assigned to it. Indeed, the probability
of this happening increases with the number of rings:

P[X ≥ 1 | k] = 1 − P[X = 0 | k] = 1 − (1 − pcorrupt)k. (5)

In the preceding example with k = 7 and pcorrupt = 0.10, the probability of m having a
corrupt monitor becomes 0.523.

3.4. Disabling Corrupt Monitors

Any false accusations of correct members will be rebutted and therefore does not alter
the views of correct members. Nevertheless, a corrupt member can repeatedly accuse
those members that it is assigned to monitor in order to increase system load and
execute a DoS attack. To deal with this, Fireflies allows each member mto disable rings
with misbehaving predecessors using the mask field in its note. This must, however,
be done in such a manner that m cannot, intentionally or unintentionally, disable all
its correct monitors, or m could end up having only corrupt monitors.

To solve this, we impose an upper limit on the number of disabled rings. Let k = 2t+1
where t is the maximum number of corrupt monitors that some member mcan tolerate.
Next, allow m to disable monitoring in t rings. Then, m can disable all of its corrupt
monitors. At the same time, even if m disables t correct monitors, at least one correct
monitor remains. For instance, given seven rings, m can tolerate having up to three
corrupt monitors. After disabling three monitors, m still has four active monitors,
whereof at least one is correct. This gives us the following additional rules:

RULE 6. A note N i
m is only valid if the contained mask bitmap is of length k = 2t + 1

and at most t of the bits are disabled.

RULE 7. An accusation A[m]i
m′ is only valid in ring r = (M, id) if m ∈ M and the bit

corresponding to the identifier id in the mask field of N i
m is enabled.

In general, given k = 2t+1 rings, a natural question is to estimate the likelihood that
m winds up with a majority of corrupt monitors. We assume that all of m’s neighbors
have been assigned independently and that each is corrupt with probability pcorrupt.
Let Xmi ∈ {0, 1} for i = 1, 2, . . . , k be random indicator variables such that Xmi = 1 if
neighbor i of m is corrupt, and Xmi = 0 otherwise. Define Xm = ∑k

i=1 Xmi to count the
number of corrupt neighbors of m.
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THEOREM 3.2. Let 0 < pcorrupt < 1/2. The probability that m has a majority of corrupt
monitors is P[Xm ≥ t + 1] < exp (−O (k)). If k = �(log N), then the expected number of
nodes that have a majority of corrupt neighbors is O(1).

PROOF. Let μm = E[Xm] = k× pcorrupt. We will use the following version of the Chernoff
bound on the upper tail of sums of independent random variables:

P
[
Xm ≥ (1 + δ)μm

] ≤ exp
(

−δ2 × μm

2 + δ

)
for δ > 0. (6)

Note that k
2 < t + 1, and so that P[Xm ≥ t + 1] < P[Xm ≥ k

2 ]. By setting

δ = 1
2pcorrupt

− 1,

we have k/2 = (1 + δ)μm = (1 + δ)k × pcorrupt.
Note that the assumption 0 < pcorrupt < 1/2 in our theorem implies δ > 0 as required

by the Chernoff bound. We can therefore substitute for δ and μm in (6) to obtain

P[Xm ≥ t + 1] < P[Xm > k/2] ≤ exp

⎛
⎜⎝−

(
1

2pcorrupt
− 1

)2
k × pcorrupt

2 + 1
2pcorrupt

− 1

⎞
⎟⎠

= exp
(

−k × (2pcorrupt − 1)2

4pcorrupt + 2

)
.

Let us call a node that has a majority of corrupt neighbors an unfortunate node. The
preceding bound shows that the probability of a node being unfortunate is exponen-
tially small in k, the number of rings. We proceed to bound the expected number of
unfortunate nodes Z as we vary k. This calculation will indicate how our system should
be configured at large scales. Let Zm ∈ {0, 1} for m = 1, . . . , N be a random variable
denoting whether node m is unfortunate (Zm = 1) or not. Then Z = ∑N

m=1 Zm. It follows
that

E[Z] =
N∑

m=1

E[Zm] =
N∑

m=1

P[Xm > k/2] < N × exp
(

−k × (2pcorrupt − 1)2

4pcorrupt + 2

)
.

Thus, if we impose the condition that

E[Z] < c, (7)

for some configuration constant c > 0, we obtain that

exp
(

−k
(2pcorrupt − 1)2

4pcorrupt + 2

)
<

c
N

,

k
(2pcorrupt − 1)2

4pcorrupt + 2
> ln

(
N
c

)
,

and thus

k > ln
(

N
c

)
4pcorrupt + 2

(2pcorrupt − 1)2 = �(log N). (8)

In other words, the expected number of unfortunate nodes is constant with c when the
number of rings k is logarithmic in N.
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Fig. 4. Example of valid and invalid accusations.

The case where no node is unfortunate is of particular interest. Based on the preced-
ing calculations, we can obtain the following lower bound on k. Since

P[Z = 0] =
N∏

i=1

(1 − P[Zm > k/2]) >

(
1 − exp

(
−k × (2pcorrupt − 1)2

4pcorrupt + 2

))N

,

we obtain that P[Z = 0] > ε when

1 − exp
(

−k × (2pcorrupt − 1)2

4pcorrupt + 2

)
> ε1/N

or

k ≥ 4pcorrupt + 2
(2pcorrupt − 1)2 ln

(
1

1 − ε1/N

)
≥ 4pcorrupt + 2

(2pcorrupt − 1)2 ε1/N. (9)

3.5. Skipping Crashed Members

As we have not bounded the probability that a member is crashed, all predecessors
of a member may be crashed with nonnegligible probability. In order to allow such
members to be accused in case they crash, a member must be able not only to accuse its
immediate successor in each ring, but must also be able to make accusations skipping
over potentially crashed successors.

We therefore allow members not only to accuse their immediate successors, but also
the lowest ranked live member in each ring. This gives us the following rule:

RULE 8. An accusation A[m′]i
m is only valid in ring r if there is no other live member

m′′ such that rankr(m′, m′′) > rankr(m′, m).

In Figure 4(a), we illustrate how one of the members observes a group with seven
members, A through G, using k = 3 rings. For simplicity, we ignore ring deactivation.
Given that the four members A, B, C, and G have crashed so that they cannot issue
rebuttals, then the accusations A[A]F , A[B]A, A[C]F , and A[G]D, shown as solid arrows
in the figure, will all eventually become valid for the following reasons:

—A[A]F is valid because F is the immediate predecessor of A in rings 1 and 2.
—A[B]A is valid because A is the immediate predecessor of B in ring 1. Note that

accused members are not excluded from issuing accusations, so A[B]A is valid even
though A is considered crashed.

—A[G]D is valid when the timer T [B]m for B expires at member m, making D the
highest ranked live monitor for G in ring 2.

—A[C]F is valid since F is the immediate predecessor of C in ring 3. Also, when TA
expires then F is the highest ranked live successor of C in ring 2, and when both TA
and TB expires it is similarly the highest ranked successor in ring 1.
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One complication from Rule 8 is that the reception of a note N j
m′ might not only

invalidate any previous accusations A[m′]i
m where i < j. Since the rebuttal implies

that m′ is no longer considered crashed, then any previous accusations A[m′′]m valid
in ring r are invalidated in that ring if rankr(m′′, m) < rankr(m′′, m′). If A[m′′]m is no
longer valid in any rings, then it must be discarded.

To illustrate this, consider the situation in Figure 4(b) where member B recovers and
issues a rebuttal. Then the following invalidation occurs, shown as dashed arrows in
the figure:

—A[B]A becomes invalid because of the new note from B.
—A[G]D becomes invalid since B is now considered live and is higher ranked than D in

ring 2 (i.e., rank2(G, D) < rank2(G, B)) and the accusation is not valid in any other
ring. Consequently, there are no valid accusations for G, and it is considered live
until it is correctly accused by either B or E.

—A[C]F is valid as it is still valid in rings 2 and 3. However, the accusation becomes
invalid in ring 1 due to B recovering.

This process of rechecking accusations must be conducted whenever a member m′
transitions from a crashed to a live state or is added to the overlay. The invariant of
Rule 8 limits the set of potential invalid accusations A[m′′]m to any successors m′′ of m′
up to and including the first live one in each ring r. Furthermore, only those accusations
where rankr(m′, m′′) > rankr(m, m′′) need to be considered. This effect cascades if the
invalidation of A[m′′]m results in m′′ transitions from a crashed to a live state. In this
case, the process of rechecking accusations must be conducted in the context of m′′ as
well.

Allowing members only to skip over crashed members rather than accused members
limits the rate at which corrupt members can make false accusations to k/2�. However,
it will also make data propagation between correct members more complicated and less
efficient as agreement on which accusations are valid will depend upon the 2� timeout.
In practice, gossip-based dissemination schemes as used in Fireflies will take care of
this complication, but can result in accusations being sent multiple times between
members.

3.6. Protocol Summary

We can summarize the Fireflies overlay maintenance protocol in the following steps:

—Member msuspects member m′ of having crashed. On each ring, mmonitors the
lowest ranked live successor m′ for which m can issue a valid accusation according
to Rule 8 and Rule 7. Should m suspect that m′ has crashed, then it creates and
signs an accusation A[m′]

i

m, where N i
m′ is the most recent note for m′ known to m, and

subsequently gossips this to the other members.
—Member m receives a note N i

m′ for member m′. Member m first checks that the
received note is correctly signed according to Rule 1 and has a correct mask according
to Rule 6. If not, the note is discarded. If m does not already have a note for m′, then
m adds N i

m′ to its notes set and considers m′ a new live member. If m has a note
N j

m′ where j > i, then the received note is discarded since it is obsolete according to
Rule 2. If j = i, then m already knows about this note and needs to do nothing. If
j < i, then the received note is more recent. Member m then updates its state with
the new note N i

m′ and discards the old note. Any previous accusations for m′ will then
become invalid, due to Rule 3, and any previous timeouts T [m′] j

m become invalid due
to Rule 4. If m′ was previously considered crashed, then m may have accusations

ACM Transactions on Computer Systems, Vol. 33, No. 2, Article 5, Publication date: May 2015.



5:12 H. D. Johansen et al.

for other members that now are invalid according to Rule 8. These accusations are
removed as well.

—Member mreceives an accusation A[m′]i
m′′ for m′. Member mfirst checks that the

received accusation is correctly signed according to Rule 1 and has a valid and recent
note according to Rule 3. If not, the accusation is discarded. If m′ = m, then mreplaces
its note with a new one to act as a rebuttal according to Rule 5, which is subsequently
gossiped to the other members. If m �= m′ and m already has an accusation for m′ on
the same rings as the new accusation, then m replaces its accusation only if the new
one is from a higher ranked accuser. Otherwise, m accepts the accusation and sets
the removal timer T [m′]i

m if not set earlier.
—The removal timer for T [m′]i

m expires. Member m considers m′ to have crashed.

4. DATA DIFFUSION

Membership maintenance in Fireflies requires a broadcast primitive where all correct
members can be reached within � time. Corrupt members might therefore attempt
to attack the protocol by slowing down dissemination or neglect forwarding data al-
together. To fight such attacks, Fireflies uses a gossip-based broadcast service. Gossip
protocols are known to be highly robust as they are essentially flooding protocols. But
unlike flooding protocols, they are efficient with probabilistic bounds on delivery la-
tency [Kermarrec et al. 2003]. In our particular situation, we have to concern ourselves
with corrupt members.

One key concern with gossip is that corrupt members could gang up on a small
set of correct members, overwhelming them with gossip load [Badishi et al. 2006].
Fortunately, Kermarrec et al. [2003] have shown that it is possible to build effective
gossip protocols if each member only has a small set of uniformly chosen members
with which it gossips. We therefore restrict who can gossip with whom using the same
technique used in Section 3.3 to assign monitors, except that we here use a possibly
different number of rings. Gossip neighbors are thus chosen from a pseudorandom
low-diameter mesh that connects all correct members. To maintain this mesh, each
member connects to its first live successor in each ring, and allows a connection from
its first live predecessor. More precisely, Fireflies dictates the following rules:

RULE 9. Let m.live ⊆ m.view be the set of all members m considers live. For each ring
r, member m maintains a secure mutually authenticated gossip connection with

m′ = arg min
x∈m.live

rankr(m, x).

Correct members will relentlessly reconnect gossip connections that terminate from
errors or timeouts. Changes in the gossip mesh occur only as a consequence of the
following events in membership:

—Member m receives a note N i
m′′ for some member m′′ where rankr(m, m′′) <

rankr(m, m′) and either Cm′′ was previously unknown to m or there exists a time-
out T [m′′] j

m > 2� with i > j. In this case Rule 4 dictates that T [m′′] j
m is invalid and

m′′ transitions from failed to live in m.view, and thus m′′ = arg minx∈m.live rankr(m, x).
—A valid timeout T [m′]m becomes older than 2�. In this case, m′ transitions from live

to failed in m.view.

If at any point in time member m should determine a better gossip partner m′′ for ring
r according to Rule 9, m terminates the existing connection with m′ and contacts m′′
instead.

When receiving a request for gossip from some member m′, member m will use its
local view to check if m′ should be allowed to connect using the following rule:
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RULE 10. For each ring r, member m accepts gossip only from m′ if

m = arg min
x∈m.live

rankr(m′, x).

Note that Rule 5 dictates that a correct member m always consider itself live and so
have m ∈ m.live. Also, note that Rule 10 does not require the connecting member m′
to be in m.live, which enables recovering members to reintegrate themselves into the
gossip mesh. Given that m′′ = arg minx∈m.live rankr(m′, x) for some member m′′ �= m,
then any connection attempt from m′ will be rejected by m. To help m′ integrate itself
into the gossip mesh in such cases, m will, as part of the gossip handshake protocol,
redirect m′ to m′′ by transmitting the note Nm′′ before terminating the connection. In
the case that m′′ had indeed failed, but just had not timed out in m.live, then m′ will
wait for a period >2� before retrying connecting to m. Newly joining and recovering
members should gossip with at least t + 1 different randomly chosen members before
they can be reasonably certain that they are integrated into the true membership, as
opposed to a fake membership created by corrupt members [Singh et al. 2004].

4.1. Ensuring Connectivity

Allowing members to gossip with only a limited number of other members enables
Fireflies to reduce the opportunity for corrupt members to attack. For such a scheme
to work, however, the number of gossip partners for each member must still be large
enough to form a connected graph of correct nodes.

The classic result of Erdös and Rényi [1960] shows that in a random graph of N
nodes, if the independent probability of each pair of nodes being connected is at least
pN = (log N + o(1))/N, then the graph will almost surely be connected.

The number of correct members, n, is expected to be at least (1 − pcorrupt) × N,
where pcorrupt is the configured upper bound on the probability that a live member
is corrupt, and N is the total of all members (correct, crashed, and corrupt). If each
member has k neighbors, then the probability that one member is connected to another
is 1 − (1 − 1/N)k ≈ 1 − exp(−k/N) ≈ k/N. Thus, pn ≈ 2k/N. In order for the correct
members to be connected with probability ε, we obtain

k ≥ N
2n

×
(

log
−n

log ε
+ o(1)

)
. (10)

4.2. Timeout Value �

Next, we determine the resulting �: the time needed to disseminate a message in
a random graph. To better preserve resources, instead of each updating all of its k
outbound neighbors in every round, we instead select one neighbor for each round in a
round-robin fashion. Conservatively, we will assume that it takes k rounds to update
all gossip neighbors, and thus the dissemination runs a factor k slower than if every
neighbor were updated in each round. If dn is the diameter of the graph of correct
members, then the expected length of time to disseminate an update reliably among
the correct members is � = k × dn.

An asymptotic value for the diameter of the resulting graph dn can be determined.
The result of Chung and Lu [2001] shows that if npn → ∞, which holds true in our
case, then the expected diameter of our graph is given by

dn = (1 + O(1))
log n

log npn
.

Unfortunately, this expression does not provide the constants needed to tune the
mesh. In order to find suitable constants, we ran simulation experiments with N
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Fig. 5. Number of rounds required to dissemi-
nate an update.

Fig. 6. Crash detection threshold τ as a function
of packet loss rate.

ranging from 24 to 214 for varying values of pcorrupt and with k chosen as earlier (ignoring
the O(1) constant term), to determine if the resulting graphs of correct members are
indeed connected and to obtain values for �. We ran each experiment 100 times. We
encountered no disconnected graphs in any of our 3000 experiments. In Figure 5 we
report the maximum number of required gossip rounds that we observed for each N
and pcorrupt with ϕ = 0.99999. Rings are added as the number of members increase.
This boosts the connectivity of the mesh, which can be seen as intervals of constant
slopes in the figure.

5. ADAPTIVE CRASH DETECTION

To detect crashes, members monitor one another by sending probe messages. Each
probe involves a member m sending a ping message to its neighbor m′ at regular
intervals. If m′ is correct, it returns a pong message.

A probe is only successful if both the ping and the pong messages are received.
In the time period between the ping and the pong message, we say that a probe is
pending. After some period of time, a pending probe will timeout and the member
being probed will be considered to have crashed. Because the Internet implements
best-effort protocols, messages can be lost. Therefore, if a probe fails, mshould attempt
to resend a ping probe. Member m concludes that m′ has crashed after τ consecutive
probes have failed.

Using a static global value for τ , however, is not a good choice as members might
experience different packet-loss rates and end-to-end latencies. A poorly chosen value
will cause correct members to either accuse live members too often, resulting in unnec-
essary network traffic, or cause correct members to accuse crashed members too rarely,
allowing them to remain in the views of other members. As such, τ should be adapted
to the characteristics of each individual monitoring link.

5.1. Setting the Threshold τ

Bolot [1993] shows that the loss of probe packets is essentially random when the probe
traffic consumes less than 10% of the available network bandwidth. Also, Barford and
Sommers [2004] show that the overall loss rate is stable. As such, we model probing
as a negative binomial experiment with parameters r = 1 and the probability of a
probe succeeding, S, reflected in the measured packet-loss rate. A successful probe
requires that both the ping and the pong messages are delivered. Hence, the packet-
loss probability rate λ, and the probability of a successful probe S are related by
S = (1 − λ)2.
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Let X denote the random variable of the number of probes required to succeed. For
instance, if a link has no packet loss, then X = 1. As a negative binomial experiment,
the probability that the probe succeeds at x attempts is given by

P[X = x] = (1 − S)x−1S, x = 1, 2, . . . .

If m repeats a probe τ times and m′ is live, the probability that at least one probe
succeeds is given by

P[X ≤ τ ] =
τ∑

x=1

(1 − S)x−1S = 1 − (1 − S)τ .

Hence, if after τ failed probes m decides that m′ has crashed, the probability that m is
wrong because all probes failed due to packet loss is given by

Pmistake = 1 − P[X ≤ τ ] = (1 − S)τ = (2λ − λ2)τ . (11)

Thus, if m wants to establish with certainty Pmistake that m′ has crashed, then the
number of consecutive probes it must submit is given by

τ = log (Pmistake)
log(2λ − λ2)

. (12)

The threshold τ increases exponentially with λ. As such, we cannot effectively deter-
mine a crash with high accuracy when packet loss is high as illustrated in Figure 6.

5.2. Rounding Error

Equation (12) may produce fractional output values. For instance, if Pmistake = 10−4 and
λ = 0.10, then τ = 5.546. Clearly, mcannot probe m′ 5.546 times and must choose either
5 or 6. In either case, a rounding error is introduced. Because λ is determined by the
packet-loss rate of the underlying network, it cannot absorb this error. Hence, the error
must be absorbed by Pmistake. Say that mchooses τ to be 5. For this to occur, Equation (11)
gives us Pmistake = 2.47 × 10−4. In other words, even though m configured Pmistake to
be 10−4, the observed Pmistake will be 2.47 × 10−4, which is 2.47 times higher. If m had
chosen τ to be 6, the observed Pmistake would be 4.70 × 10−5, which is 2.1 times lower.

5.3. Estimating Packet-Loss Rate

The previous calculations rely on us knowing the packet-loss rate. For this, we estimate
S, the probability of a probe succeeding, by measuring the number of probes that m
sends before it receives a response from m′. For negative binomial experiments that
produce a geometric distribution, the average number of trials required before a success
is given by E[X] = 1

S . By substituting the expectation into Equation (12), we obtain

τ = log(Pmistake)

log
(
1 − 1

E(X)

) . (13)

The value for E[X] can be estimated by m by recording the difference between ping
messages sent and pong replies received. For instance, if m sends six pings to m′, but
receives a pong reply from m′ only for the last ping, then m concludes that 5/6 of those
ping messages were lost in the network.

To estimate future loss rate, we use the simple exponential smoothing model. That is,
if Ei[X] is the current expected value for round i, x is the number of pings sent before
a pong is received and 0 ≤ α ≤ 1 is the smoothing factor, then

Ei+1[X] = αEi[X] + (1 − α)x. (14)
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Fig. 7. Adapting the timeout threshold τ to packet-loss rate.

To measure the effectiveness of our adaptive pinging protocol, we constructed a
simulation where a member m monitors some other member, m′. We currently do not
have an automated mechanism determining a good value for the smoothing factor α.
Instead, we found through trial and error that setting α = 0.99995 gave us a good
balance between smoothing and responsiveness. The pinging interval was set to 1s.
Packets were lost at random and both members were correct during the course of the
experiment. Figure 7 shows the observed rate at which m made estimation mistakes
when the packet-loss rate, λ, varies stepwise between 5% and 40%. As expected, the
protocol will adapt over time to quick changes in packet-loss rate by adjusting the
timeout threshold τ . The figure also shows the expected rate of mistakes after adjusting
for the τ rounding error. Although in this particular experiment adaption is slow,
quicker response time can be achieved by choosing a lower α value.

The extreme values for the threshold need to be considered. If packet loss is very
low, the τ threshold may be set unrealistically low. With no packet loss (Pmistake = 0), τ
would even be undefined. We address these issues by imposing a minimum threshold
τmin. Similarly, if packet loss is very high, then τ will be set unrealistically high. We
therefore also impose a maximum threshold τmax on the timeout threshold. Algorithm 1
shows the complete probing protocol.
5.4. Pinging Attacks

Corrupt members could potentially prevent detection of crashed members by forging
pong messages. This is prevented by having each ping message contain a random nonce
that has to be signed by the monitored member and returned in the corresponding
pong reply message. This strategy prevents both forging of pong messages and replay
attacks.

Corrupt members can, however, generate a modest amount of overhead on the system
by not responding to ping messages from correct members, and then rebutting the
ensuing accusations. At low frequency, such nuisance attacks are indistinguishable
from transient network outages and packet loss, which are handled by our pinging
protocol and accusation-rebuttal scheme. With higher frequency, such behavior is easily
identifiable since the high frequency of rebuttals will be visible to all members. Correct
members are not expected to send more than t rebuttals in a short time span. The CA
can remove such members simply by revoking their public key certificates.
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ALGORITHM 1: Adaptive Pinging Protocol to assess packet-loss rate
on time to ping m in ring r

// calculate threshold
τ = log(Pmistake)/ log(1 − 1/m.avgLoss);
if m.nPing > max(τ, τmin) then

m.accusations.add( newAccusation(m.note, r, self.id) )
else

send (m, newPing(self.id));
m.nPing++

end

on receive pong from m
m.avgLoss = α × m.avgLoss + (1 − α) × m.nPing;
m.nPing = 0

6. IMPLEMENTATION

Fireflies is implemented using a combination of Python and C++ extension modules on
top of the Twisted event-based networking framework.2 The latest version of Fireflies
is publicly available on SourceForge.3 We will describe several important issues specific
to the current implementation of Fireflies, including several protocol optimizations.

6.1. Certificates and Bootstrapping

Fireflies uses the OpenSSL library and tools [Cox et al. 2011] for all cryptographic
operations and can be configured to use all its key and hashing variants. By default,
Fireflies uses the 224 bits NIST-recommended P-224 [Locke and Gallagher 2009] ellip-
tic curves for signatures and authentication. The use of elliptic curve cryptography is
beneficial to Fireflies due to its smaller signature length compared to RSA and DSA.

To initialize a new Fireflies group, the CA must first create an X.509 compliant
[Housley et al. 2002] self-signed group certificate. We impose few restrictions on such
certificates, and established best-practices for generating and managing them can be
used. However, we do require that group certificates include the number of membership
rings and the number of gossip rings that are to be used. Ideally, these values would be
stored in an X.509v3 extension field, but due to a bug in a third-party library this was
not possible and so we currently encode these values in the X.509 subject organization
field.

The group certificate is self-signed with the private key of the CA and is made
available so that all potential members may download it. It is the responsibility of each
group member to check the validity of downloaded group certificates. We assume that
the CA, correct members, and crashed members never reveal their private keys. Any
member compromised by an attacker, either hacked or manipulated by a malicious
insider, is considered corrupt.

To join a Fireflies group, a new member m first generates an X.509 certificate re-
quest containing its public key, its network address, and subject information. The
request file is then sent to the CA for signing. Similar to group certificates, we impose
few restrictions on the content of member certificates. Established best-practices for
certificate generation, verification, and management should be followed. We do, how-
ever, impose that m’s network address and port number is stored in the X.509 subject

2http://twistedmatrix.com/.
3http://fireflies.sf.net/.
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localityName field of Cm. For each certificate, the CA also generates a random member
identity string, which it embeds in the subjectKeyIdentifier extension field. This devi-
ates somewhat from the default usage of the X.509 subjectKeyIdentifier field, which
is typically set to the hash of the contained public key. However, the default scheme
cannot be trusted since it gives members some freedom in choosing their identity and
subsequently their position in the overlay network. The length of the identity is set to
match the strength of the underlying hashing function used in the X.509 certificates.
Currently, we use SHA-256 for hashing and so the generated identities are 32 bytes
(B) long.

When member m has obtained a valid member certificate Cm, it can start gossiping
with other group members. The use of X.509 certificates and Secure Socket Layer (SSL)
for gossip prevents man-in-the-middle attacks. It is therefore sufficient that m gossips
with a single correct member to become integrated in the correct membership, rather
than a false one controlled by corrupt members. To ensure this, m receives a list of
initial contacts from the CA as part of acquiring Cm. This list must either include the
member certificate of a trusted boot node, or at least t+1 member certificates, randomly
selected from the set of all live members. Only after gossiping with all initial contacts
will m consider itself fully integrated in the membership.

6.2. Data Structure Optimization

Public keys and member certificates are large objects when compared to hashes and
signatures. All certificates created by the CA contain a 32B member identity that
uniquely identifies the certificate and its embedded public key. We have ignored this
identity earlier in this article, but in practice we can improve communication efficiency
by replacing the larger certificates in notes and accusations with this smaller member
identity.

A further reduction on the size of accusations can also be accomplished by removing
the notes from the accusations altogether. To identify the note of the member who is
accused, it is sufficient for an accusation to contain only the subjectKeyIdentifier from
the accused certificate and the epoch number of the accused’s note. Using the default
configuration of 224-bits ECC certificates, SHA-256 for hashing, and 32B member iden-
tifier, we obtain public-key certificates of about 364B, notes of 108B, and accusations
of 136B.

One possible complication of this optimization is that accusations and notes are not
self-contained. Consequently, the validity of an accusation cannot be established with-
out having previously received the accused note or the accuser’s certificate. Similarly,
a member cannot ascertain the validity of a note without having previously received
the corresponding member certificate. Buffering of unverifiable data structures until
the needed data is received is problematic since an attacker can easily target such a
mechanism by gossiping notes and accusations containing false identities to trigger
overflows. Instead, correct members should simply discard any unverifiable or invalid
data they receive. The underlying gossip scheme used in Fireflies will ensure that the
required data to verify received notes and accusations is available, as described in the
following.

6.3. Communication

Since ICMP is disabled in many networks, we currently use UDP for the pinging mech-
anism. Members gossip using SSL connections over TCP. Each member m connects to
the first live successor m′ in each gossip ring according to Rule 9. Using their X.509
certificates, members establish mutually authenticated connections using the SSL pro-
tocol. Although Fireflies does not require network-level encryption to ensure correct
behavior, the SSL handshake includes a secure exchange of X.509 certificates between
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connecting end points. This enables members to identify the other member in their
views and decide whether to accept or reject an inbound connection based on the re-
strictions imposed by the gossip rings as dictated by Rule 10. If the connection at some
point terminates or times out, then m, after an exponential back-off delay, will try to
reestablish that connection until m′ is considered crashed by the Fireflies protocol.

One complication is that even when mand m′ are both correct, they may have different
views. In particular, m′ may know a better gossip neighbor m′′ for m that is not in
m’s current view. If such is the case, m′ sends note Nm′′ to m. Should m have valid
accusations for m′′, then it returns those to m′ and terminates the attempt to gossip.
If no such accusation exists, then m was unaware of m′′. In that case m adds m′′ to its
view and tries to gossip with m′′ instead.

Having members m and m′ communicate all certificates, notes, and accusations back
and forth is inefficient as most of the membership data held by m and m′ are likely
to be the same. Fortunately, there exist protocols that reconcile sets of information by
only exchanging volume of information that is on the order of the size of the differ-
ence between the sets. In particular, our current implementation of Fireflies uses the
partitioned set reconciliation protocol suggested by Minsky and Trachtenberg [2002].
To reduce network and CPU overhead, we have modified the protocol so that it will
reconcile the set of object hashes instead of the data itself. The data is transferred in
a separate stage after the reconciliation is completed. Also, to ensure received data
structures are verifiable, as described in the previous section, we reconcile certificates
before notes, and notes before accusations.

6.4. Calculating the Required Number of Rings

Using the bounds on k from Equation (9), we can calculate the required number of
membership rings given pcorrupt, N, and ε. Due to the use of the Chernoff bound, how-
ever, these formulas give significantly higher estimates for k than is strictly necessary
in practice. Although an overestimate improves resilience to corrupt members, it also
increases network overhead.

Instead, we wish to compute the exact probability ε that no members will be unfor-
tunate. Recall that we then need to find the minimal k such that

P[Z = 0] > ε. (15)

Although (15) is difficult to solve symbolically for k, it can easily be computed,
as shown in Algorithm 2, using the binomial cumulative distribution cdf(x; n, p) =∑x

i=0

(n
i

)
pi(1 − p)n−i of any statistical software package. This follows from

ε < P[Z = 0] = (1 − P[Xm ≥ t + 1])N = P[Xm ≤ t]N = cdf(t; 2t + 1, pcorrupt)N.

Figure 8 shows the value of k for various N and pcorrupt using ε = 0.99, computed
using Algorithm 2. It is evident that k grows logarithmically with N, as predicted by
Theorem 3.2.

7. EVALUATION

To evaluate Fireflies, we ran experiments in both simulated environments and on
PlanetLab. We refer to each participant in the protocol as a Fireflies agent. To emulate
corrupt behavior in our system, we implemented two types of attacks:

—An aggressive attack, where the goal of the attacker is to remove live members from
the views of correct members and to induce extra network load. For this, the attacker
accuses other members of being crashed at any opportunity. The attacker will only
create accusations that are valid in accordance to its view of the membership, since
invalid accusations are simply ignored and might be forwarded to the CA as proof
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Fig. 8. Required number of rings for different parameter values.

ALGORITHM 2: Computing the required number of rings based on ε and pcorrupt

t = 1;
while ε > cdf (t; 2t + 1, pcorrupt)N do

t = t + 1 ;
end
return k = 2t + 1;

that the attacker is not following the protocol. The attacker will also refrain from
forwarding notes in an attempt to prevent correct members from rebutting false
accusations made by either the attacker or by other members.

—A passive attack, where the goal of the attacker is to keep crashed members in the
views of correct members. For this, the attacker never accuses members, and does
not forward accusations of crashed members.

7.1. Overhead of Membership Maintenance

To produce repeatable experiments in a controlled environment, we constructed a
simulated network environment in which Fireflies agents could run. The simulated
Fireflies agents share most of the code base with their networked variants, but bypasses
the Transmission Control Protocol (TCP) stack, the User Datagram Protocol (UDP)
stack, the marshalling routines, and cryptographic operations for efficiency reasons.
We also avoid copying accusation, note, and certificate structures by passing memory
location pointers.

By using essentially the same code as in the networked variant of Fireflies, we get
a detailed picture of the protocol’s behavior. Using similar versions for simulation and
experimental evaluation also simplifies debugging as errors can be reproduced in a
controlled simulated environment. Unfortunately, the level of detail that we simulate
limits our ability to scale up the experiments. For instance, on a single core of a 2.6GHz
Intel E5-2670 processor, a simulation of 200 members runs close to real time. The
scalability limits of our simulator do not indicate scalability limits of the Fireflies
protocol since we expect the protocol to be network bound in practice.

In all experiments presented in this section, we configured Fireflies to tolerate up to
pcorrupt = 0.20 corrupt members with a probability ε = 0.99. The ping and gossiping
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Fig. 9. Simulated network overhead when under attack.

intervals were set to 30s and the probabilistic upper bound on the time for gossip
to spread, �, was set to 2.5min. We set the probability of making a mistaken crash
detection in the pinging protocol, Pmistake, to 0.01 in order to trigger frequent accidental
false accusations by correct members. The total number of members, N, ranged from
20 to 160. Each experiment was run for six simulation hours. In addition, there was
a one-hour warm-up period before measurements started to remove bias and effects
from the extra load incurred while bootstrapping the system.

Initially, all members are live. After the warm-up period, we simulate churn by
periodically crashing and restarting members. Studies of operational P2P systems
indicate that churn characteristics vary between individual networks and applications
[Stutzbach and Rejaie 2006; Steiner et al. 2009]. Application-specific observations, like
those made by Steiner et al. [2009] indicating that the KAD DHT has a Mean Time To
Failure (MTTF) of 155min, might not apply to systems built using Fireflies. Since our
simulation experiments are primarily used to show linear scalability with membership
size rather than specific overhead, we opted for a simple churn model and set both
MTTF and Mean Time To Recovery (MTTR) to 6h, exponentially distributed. Each
member is then expected to recover or crash at least once during a simulation run.
Each experiment was repeated six to eight times with different initial random seeds.
For each set of experiments, we calculated 95% confidence intervals. For clarity, the
graphs presented in this section contain confidence intervals only where significant.

We varied the fraction of attackers from 0% to 10% with both aggressive and passive
attacks, chosen randomly from the set of all members. At the end of each experiment,
we ran the simulator for one additional hour with no churn, then checked the views
of all correct members. Note that sufficient redundancy must be encoded in pcorrupt to
accommodate failures of correct members in addition to the explicit attacks. With the
simulated configuration and churn, increasing the rate of attacks to 20%, we observed
that some simulation runs produced members with divergent views, indicating, as
expected, that attackers were at least temporarily successful. We observed no such
inconsistencies in the experiments with 0% or 10% fraction of attackers.

Figure 9(a) shows the resulting average rate of notes created for various pcorrupt and
styles of attack, and Figure 9(b) shows the corresponding rate of created accusations.
Aggressive attacks gave a noticeable increase in the rate of notes. This is expected
because Rule 6 dictates exactly how many monitors each member can disable. With
churn and pinging mistakes, correct members might not be able to permanently disable
all their corrupt monitors. For instance, upon receiving a false accusation A[m]i

m′ from
member m′, the correct member mwill disable m′ in N i+1

m , enabling monitoring by some
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other predecessor m′′. This gives m′′ an opportunity to execute an aggressive attack on
m, even if it was previously disabled for executing such an attack. Similarly, when some
member m is correctly detected as crashed, this also gives any corrupt predecessors of
m new opportunities for accusing the successors of m. The value for Pmistake, MTTF,
and MTTR were intentionally chosen to frequently trigger such opportunities in the
simulations.

As can be seen in Figure 9(b), the effect of the aggressive attacks is less noticeable in
the rate of accusations than in the rate of notes. This is expected as each failed member
can correctly be accused by up to 2t of its monitors, while an aggressive attack will
only produce a single accusation. With continuous churn, correct accusations for failed
members are expected to outnumber the ones from the attackers.

The passive attacks decreased the rate of both notes and accusations. This observa-
tion is also explained by the simulated churn and pinging mistakes. Because passive
attackers refrain from making any accusations, they will not make pinging mistakes
and will not accuse failed members, subsequently reducing the aggregate rate of both
accusations and notes.

7.2. PlanetLab

Our simulations indicate that the network load induced by Fireflies increases linearly
with the number of members. To gain a clearer understanding on how Fireflies behaves
when running in the wide-area Internet, we deployed our code on PlanetLab [Peterson
and Roscoe 2006]. We first ran Fireflies on PlanetLab in early February 2005, and found
the experience useful to find pragmatic problems and test our solutions. However, the
overheads we measured, some of which are presented in the following, are specific to
PlanetLab only.

Each Fireflies agent is instrumented to write a checkpoint to a log on local disk every
10s, containing the current time and approximately 100B of measurement data. The
local clocks on PlanetLab machines are synchronized using the Network Time Protocol
(NTP). As we are measuring trends over time periods of minutes, the millisecond
precision provided by NTP is sufficient for our purpose. We periodically checked all
clocks for drift using a local reference clock. Occasionally we observed machines with
clock drift and incorrectly configured time zones, which was compensated for during
postprocessing of the logs.

7.2.1. Deployment Description. We will now describe the results of one of our PlanetLab
experiments. The experiment started on March 12, 2012, and ended March 14, 2012.4
The purpose of this experiment was to measure the behavior of Fireflies under both low
and high churn load and when, at the same time, under attack by corrupt members.
Configuration options were set the same as in the previous simulations, except that
Pmistake was set to a more sensible 10−5.

Our experiment started with Fireflies agents running on 376 PlanetLab machines. At
approximately 06:39 on March 13, we terminated 25% of the agents, chosen randomly.
At about 14:30 on March 13, these agents were restarted. If an agent has not written
a checkpoint to its log during a 1-min period, it is considered crashed in that period.
The number of live agents per time period is shown in Figure 10. As expected, we
observe a large drop in the number of members followed by an equally large increase
corresponding to when we terminated and when we restarted the agents.

Agents were terminated by a script that would log into each individual PlanetLab
machine and issue a UNIX kill signal. Hence, agents would crash abruptly and without

4All dates are in GMT using 24-hour clock notation.
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Fig. 10. Number of live members over time during experiment on PlanetLab.

Fig. 11. Rate of accusations on PlanetLab.

warning. Starting agents involved a similar script. The scripts ran from our machine
located at the Arctic University of Norway, each taking several minutes to complete.

To measure the impact of corrupt members, 10% of the Fireflies agents were con-
figured to mount aggressive attacks, creating accusations at any opportunity. Another
10% were configured to mount a passive attack, neither accusing nor forwarding accu-
sations to crashed members. Corrupt members were chosen randomly from the set of
all members, except seven that were used as trusted boot nodes.

Figure 11 plots the observed aggregate rate of accusations created per second, divided
into total accusations and accusations from corrupt members. One peak can be clearly
distinguished: when the agents are terminated. This is as expected as the crashed
agents are correctly accused by the remaining correct ones. Changes in the member-
ship also gives corrupt members new opportunities to execute an aggressive attack as
any new neighbors might not have disabled their new corrupt monitors yet. We see
that as an increase in accusations from corrupt members in Figure 11 both when the
members are killed and when they are restarted. Otherwise, corrupt members make
few accusations, indicating that Fireflies can efficiently thwart such attacks. The peak
in accusations at around 18:00 on March 13 was due to a transient outage of several
PlanetLab machines.

7.2.2. Membership Churn. All our measurements indicate that there is a fair bit of
membership churn not under our control. In Figure 11, we observe this as a relatively
regular rate of new accusations being created. Because the liveness of a member in
these experiments is determined by its ability to write a checkpoint to file, the churn,
seen as a wiggle in Figure 10, is not necessarily due to outages or delays in the network.
In practice, we have observed that the majority of PlanetLab nodes tend to be fairly well
connected. However, some of the nodes are heavily loaded, to the point of making them
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Fig. 12. Outbound TCP usage on PlanetLab.

effectively unreachable. We have also observed nodes that are only partially reachable,
either due to configuration problems or due to heavy packet loss. For example, some
nodes could not send or receive UDP messages, while they could communicate through
TCP. This has two consequences for Fireflies. First, a node that cannot receive UDP
packets will accuse its successors, even if they are correct. This is not a problem, as these
successors will use their mask bitmaps to disable the corresponding rings. Second, such
a node will be accused by its predecessors. The accusations are effectively rebutted,
and this accused member is not removed from the views as long as it is able to gossip
new notes (using TCP). Unfortunately, the member cannot disable all rings, which
would have its own problems, leading to the observed continuous background gossip
of accusations and notes. We also observed nodes that had problems communicating
through TCP.

A limitation of the Fireflies protocol is that the correct nodes must form a connected
gossip graph. In particular, Fireflies does not handle network partitions. Some net-
work partitions have been observed in our PlanetLab deployments when an individual
member became disconnected from the rest of the network. Such a member is generally
not able to accuse every other member, and the partition prevents the member from
receiving accusations. It is then stuck with a view that includes members that it cannot
reach until the partition is resolved. Occasionally, however, there are clean partitions.
For example, in one run we observed two members in China forming a partitioned
Fireflies structure.

7.2.3. Network Overhead. Next, we examine the load that our system incurs on the
network. We instrumented our code to log the number of bytes sent and received
through TCP. The instrumentation was done as far down in the protocol stack as
possible so that all signaling and protocol overhead were captured, but we do not
include overhead from TCP and Internet Protocol (IP) headers. Figure 12 shows the
mean outbound network consumption per member due to gossiping of certificates,
notes, and accusations. The bandwidth follows the rate of accusations, but mostly
remains below 250 bytes per second (Bps) per correct member. The various peaks are
caused by the previously described issues. The largest observed peaks are when the
agents are terminated and restarted, in which case members consumed around 500Bps.

8. DISCUSSION

8.1. Full versus Partial Membership

An alternative to maintaining full membership views at each member is for a member-
ship protocol to provide views containing only a small subset of all members. We refer
to such protocols as partial membership protocols. Although the number of members
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contained in each view might vary from protocol to protocol, the view sizes are usually
small compared to the total number of members. As a minimum, a member m’s view
will contain those members that are to be m’s neighbors.

One reason for providing partial membership, rather than full membership, is in-
creased scalability. In a full membership protocol, memory requirements per member
will grow linearly in the number of members. Given the availability of cheap memory,
this is not necessarily a problem. For instance, in its default configuration with 364B
certificates and 108B notes, Fireflies will be able to fit approximately 10,000 members
within 4.5 Megabyte (MB) of memory.

Full membership protocols also require that every group member receive notification
of all membership changes. By requiring members to only receive notifications about a
subset of the members, partial membership protocols offer a potential increase in scal-
ability due to reduction in network load. This difference might be significant because
the churn rate, and hence the subsequent aggregate rate of membership events, tends
to grow linearly in the size of the membership.

Despite its scalability advantages in the number of member processes, providing only
partial membership views has several drawbacks compared to providing full member-
ship information.

(1) Services built on top of a full membership protocol can be made more efficient than
if built on a partial membership protocol. For example, a full membership protocol
provides Application-Level Multicast (ALM) protocols with a large candidate set of
router nodes for building routing trees, which can significantly increase efficiency
and robustness [Pietzuch et al. 2005].

(2) Maintaining overlay structures, like DHTs, requires complex and expensive coor-
dination when having only partial membership information [Stoica et al. 2003].
Complexity can be a real barrier that keeps a protocol from being used in practice
[Kreitz and Niemelä 2010].

(3) Partial membership requires messages to be routed through the overlay structure,
which make them more likely to get lost along the way and will result in higher
end-to-end latency. For instance, DeCandia et al. [2007] argue that avoiding mul-
tihop DHT routing was necessary to keep latencies sufficiently small in Amazon’s
Dynamo key-value store. A similar argument was also used by Kreitz and Niemelä
[2010] for the Spotify music application.

In our case, we are also concerned with intrusions and Byzantine faults. Each ad-
ditional routing hop needed to deliver a message m to its destination increases the
probability that m will be routed through a corrupt member who cannot be trusted to
forward or process messages correctly. An additional complication in many DHTs is
that lookups tend to converge to the same routing path. Several methods have been
proposed to counter this by establishing diverse and distinct routing paths [Urdaneta
et al. 2011]. These include probabilistic routing schemes for existing vulnerable overlay
structures [Kapadia and Triandopoulos 2008], signing routing tables using a trusted
online component [McLachlan et al. 2009], or attesting lookup paths using verifiably
assigned shadow members [Mittal and Borisov 2009]. Some DHTs have also been
structured specifically with secure routing in mind [Nambiar and Wright 2006].

Structural defenses against intrusions prevent members from using latency and
bandwidth optimizing techniques like exploiting network proximity [Gummadi et al.
2003]. Embedding in each message a route that has previously shown itself capable
of delivering messages correctly can mitigate some of the overhead incurred by secure
DHT routing [Obelheiro and da Silva Fraga 2006], though establishing such routes
still incurs significant network overhead in a dynamic environment.
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Having a full view of the membership, applications can send messages directly to
their destination. This reduces network latency, bandwidth overhead, and avoids hav-
ing to route messages through potentially corrupt third parties. Whether or not the
cost and benefits of maintaining full membership outweighs the costs and complexities
associated with secure DHT routing, depends on the application.

8.2. Building Intrusion-Tolerant Services with Fireflies

Although Fireflies maintains its overlay structure in an intrusion-tolerant manner,
services built on top of it do not automatically inherit this property. For instance, to
ensure safe storage of files, a service built on top of Fireflies must still ensure that
each file is replicated to a sufficiently large number of members. In this section, we will
discuss some specific ways that Fireflies can be used to construct higher-level services
and applications.

8.2.1. Software Dissemination. Disseminating software updates quickly and reliably is
important, particularly when they fix security holes. By intruding into the software dis-
tribution mechanism, an attacker may try to delay or prevent computers from receiving
critical security updates, allowing the attacker more time to construct and deploy mal-
ware that targets the vulnerable code [Flake 2004; Brumley et al. 2008]. Open-source
communities, like the Linux Kernel Archive and the Ubuntu Linux project, are partic-
ularly vulnerable to such attacks because they depend on donated third-party servers,
or mirrors, to distribute their software.

FirePatch [Johansen et al. 2007] is a software distribution network that makes use
of Fireflies to fight attacks from hostile mirrors that have intruded into the system.
By layering a push-pull data dissemination scheme [Pai et al. 2005] on top of the
Fireflies gossip mesh, FirePatch will have sufficient link redundancy and diversity so
that the set of correct software mirrors will form a connected mesh. Consequently,
there exists, with high probability, at least one path of only correct mirrors from the
software vendor to each correct mirror and to each correct client, which ensures correct
and timely delivery of all data.

8.2.2. Multimedia Streaming. SecureStream [Haridasan and van Renesse 2006] is an
intrusion-tolerant multimedia diffusion protocol that layers a push-pull messaging
scheme on top of Fireflies in a similar manner as FirePatch. Like security patch distri-
bution, multimedia dissemination is sensitive to delay. However, within a multimedia
stream, late packets are considered to be permanently lost and will not be recovered.
For instance, SecureStream members only request data that are within a moving win-
dow of interest. To reduce overhead of packed authentication, SecureStream groups
hashes of multiple packets into a special linear digest message. The system ensures
that digest messages are delivered to members before they receive the corresponding
data messages.

By not forwarding data messages and digests, and by overrequesting, an attacker
might try to delay the reception of a multimedia segment such that it is no longer usable
for the receivers. With a sustained rate of 300 Kilobits per second (kbps), SecureStream
is shown to deliver a significantly higher ratio of packets within acceptable time than
SplitStream [Castro et al. 2003] when under attack.

8.2.3. Distributed Hash Table (DHT). Intrusion-tolerant DHT functionality can be trivially
implemented on Fireflies. Assuming object and member identifiers are chosen from
the same identifier space, a member can simply consult its view to find the member
whose identifier is closest to the object identifier. That member is then the destination,
and messages can be sent directly to it. Such an implementation is called a One-Hop
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Distributed Hash Table (OHDHT)5 [Gupta et al. 2003], as messages are not routed
through intermediate members. If replication is required, for instance to securely store
a file, one or more Fireflies membership rings can be used to assign to each message
multiple destinations.

9. RELATED WORK

Membership protocols that provide agreement on membership views in benign envi-
ronments have been extensively researched within the context of multicast-oriented
Group Communication Systems (GCSs). Variants of such systems that tolerate Byzan-
tine failures, such as SecureRing [Kihlstrom et al. 2001] and Rampart [Reiter 1994],
have been constructed. However, the overhead of Byzantine consensus makes these
protocols unscalable in practice [Gupta et al. 2002].

Byzantine fault tolerance has also been extensively researched in the context of state
machine replication. Recent work has come a long way in improving throughput and
latency when replicas are correct and the system is stable [Kotla et al. 2007; Guerraoui
et al. 2010; Kapitza et al. 2012]. Still, such systems are intended for a small and fixed
set of participants connected by high-speed networks.

The Scamp [Ganesh et al. 2003] peer-sampling service uses an epidemic-style mem-
bership protocol that, like Fireflies, uses a small number of gossip partners in order to
obtain good scalability. Unlike Fireflies, Scamp members maintain only partial mem-
bership views and the protocols have no mechanism to verify or enforce that gossip
partner selection is random. The Scamp gossip mesh can converge to a nonrandom
structure that is not guaranteed to connect all correct members, in particular if Byzan-
tine failures cannot be prevented.

Brahms [Bortnikov et al. 2008] is a peer-sampling protocol that tolerates Byzantine
faults by combining push and pull style gossiping with careful orchestration of which
members identities to exchange and keep in local views. The Brahms view update
protocol is organized in synchronized rounds that require gossip to complete with
several partners before the local view can be updated. This might lead to prohibitive
high latency and slow convergence of membership views and update propagation. To
the best of our knowledge, Brahms has not been implemented.

Tarzan [Freedman and Morris 2002] provides anonymous messaging using a P2P
overlay. Participating nodes select relay partners verifiable at random using a ring
structure on the full membership, similarly to Fireflies. Unlike Fireflies, Tarzan’s
gossip-based membership discovery protocol does not impose restrictions on partner
selection, which makes it susceptible to DoS attacks. Also, Tarzan does not have a
mechanism for collaborative fault detection. Replacing Tarzan’s membership protocol
with Fireflies would increase its resilience to intrusions and provide lower latency
when establishing routes.

The SWIM membership protocol [Das et al. 2002] is similar to Fireflies in that it
combines an accusation-rebuttal scheme with a pinging protocol and epidemic dissem-
ination. SWIM is not designed to tolerate Byzantine failures. Although the SWIM pinging
scheme will prevent a corrupt member from keeping crashed members within the
views of correct members, SWIM cannot prevent an attacker from repeatedly making
false accusations. Also, the delegation of pinging adds to the time it takes for a crashed
member to be removed from the views of the correct members. More alarmingly, the
SWIM protocol allows members to issue crash notification messages. Upon m receiv-
ing a crash notification message for m′, m will immediately remove m′ from its view.
There are no restrictions on who can generate crash notification messages for whom.

5Not to be confused with an O(1) hop DHT, although OHDHTs are members of that class.
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An attacker can therefore use crash notification messages to falsely claim that any
correct member has crashed. Unlike Fireflies, SWIM piggybacks membership events
on ping messages, which prevents SWIM from taking advantage of set-reconciliation
mechanisms to reduce the number of duplicate events sent and received. SWIM does not
impose restrictions on member neighbor selection like Fireflies. This makes the SWIM

protocol more susceptible to DoS attacks.
Secure gossip has been rigorously studied [Malkhi et al. 1999, 2001; Minsky and

Schneider 2003; Burmester et al. 2007]. Unlike in the BAR gossip protocol [Li et al.
2006], Fireflies does not distinguish between rational and Byzantine behavior. Pace
[2011] argues that rational members in Fireflies might omit forwarding notes and
accusations to reduce their bandwidth consumption. In the case that most members
are not altruistic, such rational behavior might compromise the system. Pace therefore
proposes extending Fireflies with a local blacklist similar to the BAR-B mechanism
[Aiyer et al. 2005].

In the S-Fireflies system, Dolev et al. [2007] propose several modifications to the
initial Fireflies protocol [Johansen et al. 2006] for increased stability under high churn.
Most importantly, S-Fireflies uses a different method for assigning monitors where
each member can only accuse its immediate successor in each ring. To accommodate
for crashed members, the number of rings is increased so that each member will have
the required k unique successors. Although these improvements eliminate the need for
skipping crashed members, as in Fireflies, S-Fireflies might potentially require a large
number of ring structures to be computed and stored in memory. To see this, let N be the
number of members in a S-Fireflies group whereof m′ are live (ignoring the members’
ability to disable misbehaving monitors). Then, to find k unique predecessors, the total
expected number of rings needed is given by

∑k−1
i=0

N
n−i . For groups with mostly live

members, only a few extra rings are needed. For instance, in a group of 1,000 members
where 10% have crashed and using k = 21, then 24 rings would be required on average.
However, if 90% of those members have crashed, then 234 rings are needed on average.
When all but 21 members have crashed, S-Fireflies would on average require 3,645
rings with a variance of 1.59 × 106 rings. This structure would require 1.59 × 109

hashes to be computed and approximately 95 Gigabyte (GB) of memory.
Another modification proposed by S-Fireflies is to include a list of banned member

identifiers in the notes instead of a mask bitmap. This seemed a good idea since it
can prevent false accusations when a member has the same misbehaving monitor
on multiple rings, and we adapted it into our implementation of Fireflies. However,
a list of t member identities is a large data structure compared to a bitmap of k =
2t + 1 rings, resulting in a significant increase in bandwidth consumption. Without
also adapting the S-Fireflies ring scheme, the benefits of the banned lists did not
outweigh the increased bandwidth requirements. We therefore reverted back to our
original scheme of disabling rings using bitmaps.

10. CONCLUSION

This article describes and evaluates Fireflies, an overlay network structure that tol-
erates faults introduced intentionally by an intruder. The key idea behind Fireflies
is to organize members in a pseudorandom mesh structure that prevents hostile
members from modifying the overlay link topology to their advantage. By providing
each member with a full view of all participating members, instead of only a par-
tial view, data-intensive and latency-sensitive services built with Fireflies can avoid
costly multihop message routing. To support efficient gossip-based broadcast-style dis-
semination between members, each member is provided with a small set of neighbors.

ACM Transactions on Computer Systems, Vol. 33, No. 2, Article 5, Publication date: May 2015.



Fireflies: A Secure and Scalable Membership and Gossip Service 5:29

Fireflies guarantees that the neighbor graph of correct members is connected with high
probability.

There are limitations to what Fireflies can offer. For example, as with any Byzantine
fault-tolerant system, Fireflies cannot determine which members are corrupt unless
they reveal themselves as such by sending messages that prove they are not following
the protocol. Also, views trail membership changes, and might be stale at any time.
Given constant churn, members might never reach agreement on the state of the
membership. Instead, Fireflies provides eventual and probabilistic consistency among
the views of the correct members. With high probability, correct members will agree
on the set of long-time correct members and on the set of long-time crashed members.
This novel trade-off between scalability, consistency, and security, enables construction
of resilient overlay network services for a wide range of real-world data and latency-
sensitive Internet applications.
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agement for gossip-based protocols. IEEE Trans. Comput. 52, 2 (Feb. 2003), 139–149. DOI:http://dx.
doi.org/10.1109/TC.2003.1176982
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