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Abstract
The growing pressure on cloud application scalability has

accentuated storage performance as a critical bottleneck. Al-

though cache replacement algorithms have been extensively

studied, cache prefetching – reducing latency by retrieving

items before they are actually requested – remains an underex-

plored area. Existing approaches to history-based prefetching,

in particular, provide too few benefits for real systems for the

resources they cost.

We propose MITHRIL, a prefetching layer that efficiently

exploits historical patterns in cache request associations. MITHRIL

is inspired by sporadic association rule mining and only re-

lies on the timestamps of requests. Through evaluation of

135 block-storage traces, we show that MITHRIL is effective,

giving an average of a 55% hit ratio increase over LRU and

PROBABILITY GRAPH, and a 36% hit ratio gain over AMP

at reasonable cost. Finally, we demonstrate the improvement

comes from MITHRIL being able to capture mid-frequency

blocks.
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1 Introduction
As cloud tenants use increasing volumes of data, the pressure

mounts on the underlying storage systems to prevent high

access latencies for end-users. The prevalent techniques for

mitigating block storage access latencies are to cache recently

accessed blocks [26], and to prefetch blocks into the cache in

advance of anticipated accesses [14, 29].

Current approaches to cache prefetching can be divided into

two schools. On one hand, sequential prefetching techniques

(such as AMP [7]) anticipate access to consecutive block

identifiers, but rely on block I/O with progressive data layout.

On the other hand, history-based prefetching seeks to find and

exploit deep correlations among past accesses but normally

at substantial computational cost [18]. To mitigate overhead

and to make caching and prefetching more effective, several

applications choose to provide additional hints [23] with each

access [4, 9, 18, 19, 27]. Passing extra information, however,

requires restructuring, reorganization or modification to the

software stack [23], and is infeasible in scenarios where parts

of the stack is proprietary.

We argue that to avoid becoming a latency bottleneck, mod-

ern block storage systems need general prefetching techniques

that fulfill the following criteria.

• Exploit history. Various lower layers of storage sys-

tems perform sequential prefetching so the focus should

be on the more spatially and temporally sophisticated

patterns of reuse.

• Have low overhead. The methods must be simple, on-

line and impose low time and space overhead.

• Be backward compatible. The methods should imple-

ment standard legacy interfaces and treat other parts of

the storage system as a black-box.

Existing approaches fall short of one or more of these goals:

probability graphs and variants incur intensive space or com-

putation overhead [10, 18, 29]; QuickMine is an online al-

gorithm but relies on hints from the applications through
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modified interfaces [23] with extra hints from system or ap-

plications.

In this paper, we propose MITHRIL, a lightweight online

history-based prefetching layer which meets all of the goals.

MITHRIL can be coupled with any existing caching layer,

even composed with a sequential prefetching layer such as

AMP [7]. MITHRIL harnesses several concepts from sporadic

association rule mining [16] from the data mining literature.

The central idea behind MITHRIL is to track temporal associ-

ations between only those blocks whose access patterns are

moderately frequent. Intuitively, items that are accessed reg-

ularly are already handled by an underlying caching system,

such as LRU, whereas items that are rarely accessed need

not occupy the precious cache memory. MITHRIL detects

associated access patterns between pairs of blocks without

relying on application-level hints. In contrast to other history-

based prefetching algorithms [10, 18, 19], MITHRIL is able

to discover relationships between interleaved requests that

are not consecutive – a ubiquitous scenario in modern multi-

tenant storage systems – without incurring high computation

overhead. The focus of this paper is on exploiting patterns

in block I/O workloads, but evidence shows that MITHRIL

works on proxy workloads as well. We evaluated MITHRIL

through experiments on traces from a commercial I/O caching

analytics service, CloudPhysics [26], as well as file system

traces from Microsoft Research (MSR) [22]. We found that

MITHRIL boosts the cache hit ratio by up to 7× over typical

cache strategies (LRU) and improves over the state-of-the-art

sequential prefetching algorithm AMP by 36% on average.

Our paper makes three contributions.

• A design of a history-based prefetching layer MITHRIL

that leverages a novel, low-overhead algorithm to mine for

regularity in request timestamps in an optimized manner.

• A trace-driven experimental evaluation of MITHRIL on

135 traces from real storage systems, showing that our

MITHRIL layer effectively discovers block associations for

prefetching. On average, MITHRIL increased hit ratio by

56% over LRU, and 36% over AMP. We also measured

the latency of MITHRIL on a real system.

• A demonstration that MITHRIL discovers associations be-

tween separated blocks from interleaved applications, and

the power of MITHRIL stems from being able to capture

mid-frequency blocks.

2 Background and Motivation
Caching has been widely studied over the past 70 years. The

standard algorithm of evicting the least-recently-used ele-

ments (LRU) has seen some structural improvements over

the years [15, 21, 24, 30]. A complementary approach is to

prefetch data into the cache before it is used, typically either

based on sequential or historical patterns [23, 29]. We argue

there is room for improvement for prefetching on block I/O

workloads.

Sequential prefetching is exploited at lower layers. In se-

quential prefetching, the storage server exploits spatial local-

ity in the I/O request stream by retrieving a batch of consecu-

tive blocks upon detecting a sequential access pattern [6, 17].

Static size sequential prefetching is well-understood, simple

to implement and has seen long deployment, but can cause

cache pollution in workloads where the sequential correlation

length is variable and affect accuracy.

Cloud environments, however, exhibit high levels of con-

currency. This results in I/O workloads where multiple appli-

cations interleave I/O accesses that break the continuity of

consecutive access patterns [23]. Adaptive algorithms such

as AMP (Adaptive Multi-stream Prefetching) [6, 7] and TAP

(Table-based Prefetching) [17] dynamically decide when and

how much to prefetch. AMP, for instance, dynamically adjusts

the number of pages to be prefetched to prevent both cache

pollution and prefetch wastage when the requests streams

are interleaved. AMP increases its prefetch degree if the

prefetched blocks are waited on by system, and decreased

if prefetched blocks are evicted without being used. Unlike

other prefetching algorithms, which use read cache to detect

sequential streams, TAP uses a table to detect sequentiality

and track longer history. Thus, TAP outperforms AMP on

interleaved workloads and at small cache sizes.

Sequential prefetching has been widely deployed and com-

monly used in operating systems [2, 20], databases [25] and

storage controllers [8]. The ubiquity and success of the ap-

proach at lower layers, however, makes the approach less

attractive for higher layers in the storage hierarchy, such as

at the virtualization layer. In modern workloads, the length

of contiguous I/O sequences, furthermore, tend to be short at

the lowest levels of the storage hierarchy [29] due to virtual-

ization, multi-tenancy, disk encryption and sophisticated file

system layouts. Together, these trends reduce the effectiveness

of sequential prefetching on today’s storage workloads.

History-based prefetching has been expensive. History-

based prefetching, in contrast, tolerates discontinuity across

repeating patterns at the cost of added complexity and over-

head [10, 14]. One approach is to generate a directed proba-

bility graph over accessed items, where an arc denotes one

item is likely accessed before the other, and arcs are weighed

by the probability of an access [1, 11, 29]. Many systems

try to prevent graph metadata from becoming unwieldy by

operating at the file-level instead of the block-level [1, 10, 11],

which has inherent limitations [14].

Another take on history-based prefetching is to leverage

data mining techniques to identify repeating sequences. By

mapping a block to an item, using frequent sequence mining

on the request sequence, we can obtain frequent subsequences

in an access stream. A frequent subsequence implies that the
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Table 1: Comparison of common prefetching approaches. Overhead and improvement is measured over over LRU on 135 traces (see Sec. 5). Backward

compatible algorithms require no hints or changes to legacy interfaces. General approaches generalize beyond block I/O traces.

Algorithm Time
overhead

Space
overhead

Avg. hit ratio
improvement

Max. hit ratio
improvement Online Backward

compatible General

AMP [6] Low Low 12.2% 139% � � �
PG [10] Low High 4.1% 156% � � �
C-Miner [18] High Moderate N/A N/A � � �
QuickMine [23] Moderate Moderate N/A N/A � � �
MITHRIL Moderate Moderate 54.3% 740% � � �

involved blocks are frequently accessed together. In other

words, frequent subsequences are good indicators for block

correlations in a storage system. C-Miner [18] and QuickMine

[23] employ this technique to discover block correlations in

storage systems. However, precise data mining technique

comes with high overhead. C-Miner only runs offline due to

its overhead. QuickMine improves on the issue by tagging

each application I/O block request with a context identifier

corresponding to the higher level application context (e.g., a

web interaction, database transaction, etc.). The tag enables

the request sequence to be split before mining, thus mak-

ing computation overhead manageable. The key novelty of

QuickMine lies in detecting and leveraging block correlations

within logical application contexts. Nevertheless, it depends

on explicit contextual hints from applications, which makes

it hard to deploy and impractical for legacy systems.

Current history-based prefetching approaches may capture

complex access patterns, but require either explicit contextual

information from applications or suffer from high runtime

overheads.

In addition to the high overhead imposed by history-based

prefetching itself, the ensuing small random read requests fur-

ther deteriorates performance on traditional mechanical disks,

although the problem is minimized by the rapid proliferation

of SSDs.

Temporal block associations should be exploited. Block

associations are common in storage systems [18]. Sequential

prefetching aims to exploit spatially associated blocks, yet

temporal associations are equally important for prefetching.

Lacking a fast history-based approach, our goal in this paper

is thus to efficiently find temporally associated blocks. Table

1 shows the main algorithms for comparison.

3 Data Mining Techniques

In search for an approach to efficiently gather history for

cache requests to improve on prefetching, we survey relevant

problems from the data mining literature before describing

our approach.

3.1 Sporadic Association Rule Mining

Frequent itemset mining aims to discover which items co-

occur frequently in a transaction database. In this field, a

group of items is called an itemset, and the number of transac-

tions containing this itemset in the database is called support.
Suppose we have a transaction database. We say an itemset

A is frequent if its support supportA is larger than or equal to

some threshold, minimum support R.

Association rule mining is the discovery of a relationship

between items a and b in a frequent itemset discovered from

the previous step. We say a ⇒ b if the probability of b ap-

pearing given a is above a threshold.

Sporadic association rule mining focuses on associations

composed of mid-frequency items. It usually consists of three

steps. In the first step, frequent itemsets are generated like

before. The following step filters out highly frequent itemsets,

which are defined as those appearing more than maximum
support S times; and the frequent itemsets left are called

sporadic frequent itemsets. In the third step, association rule

mining is used to generate association rules from the sporadic

frequent itemsets. By definition, only mid-frequency itemsets

and association rules are discovered during the process [13].

3.2 Generalizing to Block Associations

Let B = {b1,b2, . . . ,bn } be a sequence of cache block I/O

requests. In order to conduct effective prefetching, we need to

identify pairs of requests {bx ,by } that are likely to co-occur

but not too frequently to be captured by the underlying cache.

Notice the similarity to sporadic association rule mining: both

try to find related items that appear close by and have mid-

range frequency.

To discover such an association, the basic idea is to apply an

existing available sporadic association rule mining algorithm

[16]. However, there are several challenges. A typical storage

system can serve up to billions of requests per day, resulting in

an unmanageably long request B. In order to conduct sporadic

association rule mining on the data, we need to transform the

request sequence into a transaction database as the first step.

The first difficulty is determining how to split B into trans-

actions. One approach is to split B according to wall clock
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Figure 1: Schematic of the Mithril prefetching layer.

time, for example, splitting requests into transactions every

five seconds. Another approach is to split B using some fixed

number of requests per transaction, e.g., group every 20 re-

quests into a transaction. However, both approaches result

in information loss, because no evidence indicates that two

requests separated in different transactions are not associated.

Recall that only items in the same transaction can be discov-

ered as frequent itemsets and as being potentially associated.

To address this problem, Soundararajan’s approach [23] us-

ing a context given by an application to split the sequence

is effective but requires changes to the underlying system to

obtain such hints, which sacrifices the generality for which

MITHRIL is designed.

The second difficulty comes from the high time and space

complexity of the currently available sporadic association rule

mining algorithms. Koh [16] proposed an optimization for

mining sporadic association rules using APRIORI-INVERSE.

Their algorithm, however, still requires two phases: mining

all sporadically frequent itemsets and discovering sporadic

association rules. Although the algorithm avoids generating

and storing highly frequent itemsets, APRIORI-INVERSE still

needs to store and count all possible associated pairs at signif-

icant computation and storage overheads, as confirmed using

the SPMF library[5].

To efficiently discover associations between requests with-

out requiring extra application-level hints, we propose the

MITHRIL prefetching layer, whose algorithm provides a fast

approximation to sporadic association rule mining.

4 Design of MITHRIL

MITHRIL is a prefetching layer between the existing caching

layer and the backend, as shown in Figure 1. Without MITHRIL,

when a request arrives, it first touches the caching layer; if it

is a cache hit, it returns directly from the cache, otherwise, as

a cache miss, the application or caching layer needs to go to

the backend to fetch the item. When MITHRIL is added, when

a request arrives, MITHRIL records the request for mining,

checks the potential prefetching list, and sends the request(s)

to the caching layer for prefetching.

4.1 MITHRIL Mining

We now describe the algorithm at the core of our prefetching

layer. Let B be a sequence of unique block I/O addresses B =
{b1,b2, . . . ,bn } where a request bi has a logical time-stamp of

i, also known as its reference number. LetT be an n×S matrix

for S = maximum support, where ith row �Ti corresponds to

request bi , and the cells of each row contain a sorted list of

increasing time-stamps. In addition, T is also sorted by the

first time-stamp of each block. Figure 2 illustrates the request

sequence and corresponding time-stamp matrix T (all the

symbols are listed in Table 2).

Table 2: Symbols used in the text

Symbol Meaning

T Time-stamp Matrix
R Minimum Support
S Maximum Support
Δ Lookahead range
M Maximum Metadata Size
P Prefetching List Size

An associated block pair refers to two blocks that are

repeatedly accessed in sequence. In modern systems, due

to multiple applications interleaving with each other, two

consecutive accesses from the same stream may not appear

consecutive in the final stream, so we define a lookahead
range Δ that specifies the maximum allowed distance between

two associated blocks. In order to establish an association

between two blocks, not only do they need to appear within

Δ of each other, but also they need to appear with some

minimum frequency. We denote this threshold as minimum
support R. Since our prefetching layer assumes the presence

of a cache to catch frequent items, we specify maximum
support S as the upper bound for items to be considered for

mining within a certain time interval. We remark that each of

these requirements have conceptual counterparts in sporadic

association rule mining.

To further distinguish associated block pairs, as illustrated

in Fig 2, we define two blocks as being weakly associated if

each time-stamp pair of the two blocks is within Δ; further-

more, if a weakly associated pair is accessed strictly consecu-

tively (time-stamp difference 1) at least once, we define it as

being strongly associated.

The reason for distinguishing weakly associated pairs and

strongly associated pairs is that two blocks in a strongly-
associated pair are more likely to be related, which is pre-

ferred for prefetching. Moreover, this effectively limits the

number of associations we find. In cases where multiple ap-

plications interleaving and a strong association does not al-

ways exist for a block, then we consider its first (also closest)

weakly associated pairs. Therefore, only a strongly associated
pair and the closest weakly associated pair are considered.
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Different length

|28-36| > Δ

Δ

Weak association
23-20 ≤ Δ

|21-26| ≤ Δ, |25-28| ≤ Δ

Strong association
requirements of weak association

+
difference of one ts pair = 1

Ignored for mining

Figure 2: Illustration of mining procedure. If input is a request sequence, convert it into time-stamp matrix T . Blocks that have fewer than R time-stamps(ts) or
more than S time-stamps are not considered for mining. For each two-block pair, if they have different numbers of time-stamps, or the difference between at least
one time-stamp pair is greater than Δ, they are not associated. If all time-stamp pairs are within Δ, they are weakly-associated. Furthermore if they have at least
one time-stamp pair with difference 1, they are strongly-associated.

We present the basic version of MITHRIL in Algorithm 2.

The function checkAssociation (Algorithm 1) receives two

rows from T as input and checks whether the corresponding

two blocks are weakly or strongly associated or not.

Algorithm 2 shows the mining procedure, which uses O(N )

time to discover associated block pairs. N is the number of

unique blocks requested during the recording interval. The

input of the algorithm can be the request sequence B or the

time-stamp matrix T . If the input is B, then we need to first

convert it into T in O(N ) time.

In the outer loop, we iterate through all rows in T . For

each block bi , we check all other blocks in the inner loop

to find bj that are either strongly associated or are the first

weakly associated occurrence. Because T is sorted by first

time-stamp of each block, so at inner loop at most Δ blocks

are checked. Typically, the number of blocks checked is much

less than Δ.

After an associated block pair is unveiled, it is stored in the

prefetching table, which is checked for prefetching upon each

request.

Algorithm 1: checkAssociation

Input: Rows R1 and R2 from time-stamp matrix T ,
associationType assoc, lookahead range Δ

Result: Whether b1 and b2 are associated
1 consecutive ← False

2 if len(R1) − len(R2) � 0 then
3 return False

4 for k ← 1 to len(R1) do
5 if abs (R1[k] − R2[k]) > Δ then
6 return False

7 if abs (R1[k] − R2[k]) == 1 then
8 consecutive ← True

9 if assoc == weak then
10 return True

11 else if assoc == stronд then
12 return consecutive

4.2 Optimizations

When MITHRIL is run, a two-dimensional time-stamp matrix

T is initialized. For each new request, if it is found in T , the
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Algorithm 2: MITHRIL mining procedure

Input: time-stamp matrix T , minimum support R,
lookahead range Δ

Result: Associated block pairs
1 for i=1 to len(T)-1 do
2 if len(T [i]) < R then
3 continue

4 associationType ← weak

5 for j=i+1 to len(T) do
6 if checkAssociation(T [i], T [j], associationType) then
7 addAssociation(blocki , blockj )
8 associationType ← stronд

9 if (T [j][0] −T [i][0]) > Δ then
10 break

current time-stamp is appended to the corresponding row.

Otherwise, the request is recorded in a new row. We append

the time-stamp to a row. When the row is full, the block is

considered frequent and deleted from the matrix and recorded

in the frequent block hashmap. Items from this hashmap are

ignored when encountered again before the mining process.

When the time-stamp matrixT is full, the mining procedure is

called and the associated blocks are saved in the prefetching

table. After mining completes, recording starts anew with a

clean state.

The version of MITHRIL described so far requires a large

matrix with maximum support S columns for storing time-

stamps, a hashmap mapping from block number to the corre-

sponding row in the matrix and a hashmap for determining

whether a block is frequent. Additionally, a prefetching table

is needed for storing associated block pairs for prefetching.

However, spending limited cache space on tracking large

metadata is not desirable. To address the metadata space us-

age of basic MITHRIL, we made the following optimizations,

which use bounded memory in exchange for some added

complexity.

4.2.1 Recording and Mining

Splitting recording table. The two-dimensional recording

table (time-stamp matrix) is a sparse matrix, since a typical

block, by definition, will be requested fewer than maximum
support S times within a recording period. A naïve implemen-

tation uses a linked list for each block instead of a fixed-size ar-

ray. However, the space for link pointers between time-stamp

nodes doubles the space overhead. We exploit the sparsity by

decomposing the large matrix into two smaller fixed-sized

tables: one with minimum support R columns, which is the

recording table, and the other one with maximum support S
columns, which we call the mining table. The recording table
is a circular array in which new entries replace old entries

in FIFO fashion. The mining table is a fixed-size array that

triggers the mining procedure when full.

When a block request arrives, the time-stamp is recorded

in the recording table. If the number of time-stamps in the

corresponding row of the recording table has reached min-
imum support R, in other words, when the row is full, it is

declared to be mining-ready and then transferred into the

mining table, which can store up to S time-stamps for each

block. After migrating one row from the recording table to

the mining table, the last row in the recording table is moved

up to the migrated row to make the table compact. When the

mining table is full, in other words, when there is no more

room to store new mining-ready blocks, the mining procedure

is triggered to discover associated block pairs and store them

in the prefetching table for prefetching. When the mining fin-

ishes, the mining table is cleared. When the recording table
is full, we replace the oldest entry with a new entry with the

assumption that the oldest block remaining in the table is rare

since it has not been requested R times within the interval.

Decomposing the original matrix not only saves space,

but also allows for more blocks to be tracked. Because the

recording table does not need to be cleared each time, we

retain extra information for blocks that are not mining-ready.

In the unoptimized approach, the large time-stamp matrix

was cleared each time the mining finishes, discarding all

information.

The primary drawback of splitting is that the mining table
needs to be sorted before mining. This is because Algorithm 2

requires input to be sorted by the first time-stamp, which oc-

curs automatically in our single-table construction. Since our

separate mining table is created by inserting elements in the

order of accumulating R time-stamps, sorting the mining table
before mining is necessary. In practice, however, the size of

the mining table is usually small and sorting is trivial. A sec-

ondary concern is that when mining begins, some associated

blocks may collect more time-stamps than others due to the

cut-off (misalignment) between the tables. This behavior is

rare and affects only a small number of associations found.

Since MITHRIL is an approximation, missing a few associa-

tions is not critical. Our focus is instead of on balancing the

overhead and the benefits.

Compressing time-stamps. To further reduce the space

used by the recording table and the mining table, we com-

press time-stamps by storing only the lower 15 bits. This

allows us to store four time-stamps in the lower 60 bits of one

64-bit integer with a time-stamp counter stored in the higher 4

bits. Moreover, one could further compress time-stamps by re-

moving the last �log2 (Δ)� bits – we omitted this optimization

in our experiments to limit time overhead.

Removing the frequent block hashmap. A block that is

requested more than S times in each recording interval in the

original MITHRIL approach is considered to be a frequent
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block, so no information should be recorded. To track the re-

quests, one could use a hashmap or Bloom filter, but hashmaps

require extra memory and Bloom filters incur extra computa-

tion overhead. Instead, we decide to record a block only on

cache miss. In this way, all frequent blocks are automatically

filtered out by the underlying cache. There are several other

benefits. First, MITHRIL need not be invoked when cache

sizes are sufficiently large and minimum support R is greater

than 1. This behavior happens gradually over larger cache

sizes since the mining phase will be run less frequently. Sec-

ond, if a block is accessed frequently over a short period, the

optimized recording method cuts down overhead since it only

records cache misses, thus precluding spuriously recording

frequently accessed blocks. If the cache size is small, record-

ing bursts and thus prefetching frequent items is useful since

these blocks are constantly being evicted by the underlying

cache.

Our optimizations trade off storage, computation overhead,

prediction precision and hit-ratio improvement. The more

useful information we record, the higher hit rate and precision

can be achieved, but at the same time more overhead is in-

curred. Besides recording at cache miss as mentioned above,

optionally we can also record the time-stamp when a block is

evicted from the cache to obtain more information about the

block. Recording at eviction is similar to recording at cache

miss: in both approaches, the frequent blocks are filtered out

by the underlying cache.

4.2.2 Prefetching

Splitting the prefetching table into shards. We use a two-

dimensional array instead of lists to store associated block

pairs together for storage reduction for the same reason as

using an array in the recording table. In the prefetching table,

the first column stores the originated block number bx , while

the rest of the columns store the blocks that are associated

with by . The number of columns left is the maximum number

of possible block pairs, defined as prefetching list size P . We

use a default of three columns, indicating that, at most two

block pairs can be stored for each block. For example, in an

association bx → by , bx is stored in the first column and by is

stored in the second column. If there is another association,

bx → bz , then the third column stores bz . If more than two

associations are discovered, we replace the old associations in

a FIFO manner, which allows MITHRIL to adapt to changing

workloads. Meanwhile, we do not differentiate strong and

weak associations in the prefetching table.

Since cache behavior varies in different workloads, it is

impossible to know how many blocks will have associations

ahead of time, and thus how much memory will be needed.

Therefore, we introduce the concept of shards. A shard is a

prefetching table with 2000 rows that is dynamically allocated

when needed. When a user specifies a maximum metadata

size M can be used for MITHRIL, an upper bound is placed

on the number of possible shards. When all possible shards

are allocated, a new row will replace the oldest row.

By introducing shards, we aim to find a balance between

frequent allocation and overallocation of memory. In addition

to saving metadata memory usage, the maximum memory

usage is also bounded by maximum metadata size M .

Since prefetched blocks are also added to the original cache

pool, it is possible for a prefetched block to be evicted before it

is used. As other authors suggest [6, 8], we give the prefetched

block a second chance by re-adding it to the MRU end of

cache if it is going to be evicted without being accessed.

4.3 Using MITHRIL

Using MITHRIL as a prefetching layer requires minor modifi-

cations to the underlying caching layer. The complete flow of

MITHRIL is shown in Algorithm 3. A prefetch from MITHRIL

requires passing one parameter and two indicators. The param-

eter is the current block number, which is used for recording,

prefetching or both. The two indicators are pFlag and rFlag,

which indicates whether it is for recording or prefetching.

There are two scenarios where the MITHRIL API may be

called. First, when a request arrives, MITHRIL must check

whether prefetching is needed. In this situation, pFlag =
True and rFlag = False. Second, to handle recording

when rFlag = True and pFlag = False. This recording

may be invoked (a) at the arrival of each request, (b) only

at cache misses, (c) only during cache eviction, or (d) dur-

ing both misses and eviction. Recording at each request or

recording at both misses and evictions increases the compu-

tation overhead. As we demonstrate in Section 5.4, record-

ing on the arrival of each request optimizes performance,

whereas recording only at cache misses provides similar per-

formance at much lower overhead. In contrast, we find the

two approaches (c, d) recording on eviction do not to provide

competitive performance.

4.4 Complexity Analysis

Time complexity. Compared to LRU, the only operations

added to each request are to record the current logical time-

stamps in the recording table on a cache miss and check the

prefetching table and prefetch when needed. Each of these

operations has a time complexity of O (1), so the total compu-

tation overhead at each request is negligible. Periodically, the

mining procedure runs and is dominated by an O (N logN )
sort, where N is a fixed, typically small table size. The mining

process can furthermore be run in a background thread and

thus avoid blocking new requests.

Space complexity. In the optimized MITHRIL, we store

all time-stamps as 15-bit integers with four time-stamps in

one 64-bit integer. Thus if we have maximum support S=8,
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Algorithm 3: The MITHRIL main algorithm.

Input: recording table rTable, mining table mTable,
prefetching table pTable, minimum support R,
block# b, prefetchingFlag pFlaд, recordingFlag
rFlaд

Output: blocks to prefetch
1 ts ← 0

2 if rFlaд then
3 tsRow ← pTable[b]
4 append ts to tsRow

5 if len(tsRow ) ≥ R then
6 move tsRow to mTable

7 move last row in rTable to tsRow

8 if mTable is full then
9 mining()

10 clear mTable

11 ts ← ts + 1

12 if pFlaд then
13 if b in pTable then
14 return pTable[b]

15 return NULL (no need to prefetch)

minimum support R=4, recording table size 100,000 and min-
ing table size 1,250, recording and mining will need less than

2MiB. When calculating size of hashtable, which maps

from block address to index in recording table or mining ta-
ble, the 8 byte is used for storing block address, the 4 bytes is

used for storing the index.

Since all information is stored in a bounded array, the max-
imum metadata size M allocated is usually set to 10%, which

is more than enough in most cases. And in our evaluation, we

count in the memory usage for all metadata for fair compari-

son, which means when MITHRIL metadata uses 5% of cache

space, then only 95% of space will be used for store cache

data.

5 Evaluation
We now characterize MITHRIL experimentally with the fol-

lowing questions in mind:

• How much does MITHRIL improve the hit ratio? What are

the best and worst cases?

• How well does MITHRIL work with various cache replace-

ment algorithms, and how precise is prefetching?

• How do parameters affect MITHRIL?

• Is latency improvement enough to justify overhead?

• Why does MITHRIL work?

5.1 Methodology

As a history-based prefetching layer, ideally we should com-

pare MITHRIL with C-Miner [18] and QuickMine [23], which

are the two state-of-the-art algorithms in history-based prefetch-

ing. However, since C-Miner and QuickMine either runs of-

fline or requires context information from the applications,

which is not applicable in our setting. Instead we implemented

another history-based prefetching technique, PROBABILITY

GRAPH (PG) [10], together with a state-of-the-art sequen-

tial prefetching algorithm, AMP [6], and LRU to compare to

MITHRIL. Note that MITHRIL can be used on top of AMP.

We evaluated algorithms on 106 traces from commercial

I/O caching analytics services from CloudPhysics (CP) to-

gether with 29 traces obtained by Microsoft Research (MSR)

[22] (We omitted traces that have fewer than a half million

requests). The CloudPhysics traces are explained in detail by

Waldspurger et al. [26]. For simulation-based results, we used

the MIMIRCACHE [28] for profiling and analysis on a Mi-

croway server of dual E5-2670v3 CPUs with 512GB memory.

For the micro benchmark, we modified IOBlazer [3] and ran

it on AWS EC2 c3.large instance with an EBS magnetic disk.

In this section, if not specified, MITHRIL is used together

with LRU, and all experiments showing single trace used

trace w94 from CP [26], which is a week-long VM trace. The

cache size, if not mentioned, is set to 256MB, which exhibits

a range of LRU hit ratios between 10% to 99%. The profiling

platform and MITHRIL implementation will be released under

open-source after publication [28]. The CP data used in the

paper will be released by CloudPhysics separately.

5.2 Overall Hit Ratio Improvement

As a prefetching layer, MITHRIL is unaware of the underly-

ing caching algorithm, which might be either FIFO, LRU,

AMP or other possible cache replacement algorithms. In this

section, we show that MITHRIL provides benefits for LRU

and AMP.

Comparison with PG. PG is the most comparable history-

based algorithm, so we compare MITHRIL with PG in this

section. In Figure 3, we show the hit ratio of PG and MITHRIL

for all the traces. LRU is not shown in the trace because of

its high resemblance to PG in terms of average hit ratio and

correlation: the Pearson Correlation Coefficient between hit

ratio of LRU and PG is 0.993, while it is 0.801 between

LRU and MITHRIL. The low correlation between LRU and

MITHRIL implies that the performance of MITHRIL does not

completely depend on the performance of LRU. Compared to

LRU, on average MITHRIL provides 52% relative improve-

ment in the hit ratio on CP traces, and on average achieves

82% of the maximum obtainable hit ratio at small cache size,

which is calculated by excluding cold miss. On the 29 MSR

traces, MITHRIL provides on average a 64% hit ratio improve-

ment achieving 81% of the maximum obtainable hit ratio. As

shown in the figure, the hit ratio improvement for MITHRIL

varies between traces. For certain traces, it can provide up

to more than 7× improvement, but for some other traces, the
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Figure 3: Hit ratio of PG and Mithril for 106 CP traces and 29 MSR traces sorted by PG hit ratio. Hit ratio of LRU omitted as it is similar to PG (Pearson
r = 0.995 compared to r = 0.742 for LRU and Mithril). Compared to PG, Mithril overall provides significant improvement, even though parameters are not
fine-tuned for each trace.
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Figure 4: Left: Hit ratio of Amp and Mithril-LRU, right: Hit ratio of Amp and Mithril-AMP for CP and MSR traces sorted by Amp hit ratio. Left:
Mithril-LRU outperforms Amp in most traces. For some traces with strong sequentiality, Amp has better performance due to its ability to prefetch pages that
have never been requested. Right: Mithril-AMP improves or matches hit ratio for most traces compared to Amp.

improvement is more modest, particularly those whose PG

hit ratio is already high.

Comparison with AMP. As a prefetching layer, we also

compare MITHRIL with state-of-the-art sequential prefetch-

ing algorithm AMP, which dynamically captures the spatial

associations in the requests. Compared to AMP, MITHRIL on

average provides a 31% increase in hit ratio on CP traces and

51% on MSR traces, indicating that by exploring temporal

associations, MITHRIL can provide more benefit than AMP.

However, as shown in Figure 4, MITHRIL does not always

provide more benefit compared to AMP. In some traces where

sequentiality is not dominant, MITHRIL provides a great ben-

efit, more than a 7× improvement on hit ratio; in some other

traces where sequentiality dominates the disk access pattern,

AMP provides more benefit than MITHRIL. The reason AMP

outperforms MITHRIL lies in its ability to prefetch blocks

that have never been requested. In contrast, MITHRIL does

not have this ability. It can only prefetch blocks already seen

in the past.

Although AMP surpasses MITHRIL in some cases, MITHRIL

as a prefetching layer can be used on top of AMP. In Figure 4,

we show the hit ratio obtained by AMP compared to MITHRIL-

AMP. Using MITHRIL on top of AMP guarantees at least

similar performance as AMP, and still provides a large benefit

on most of the traces. This improvement implies that besides

spatial-locality, which has been captured by AMP, MITHRIL

is capable of further leveraging the temporal-locality asso-

ciations between requests to gain performance promotion.

Note that Figure 3 and Figure 4 cannot be directly compared,

because former one is sorted by PG, and latter one is sorted

by AMP. However, Figure 4 and Figure 4 are comparable

since curves in both figures are sorted by the AMP hit ratios.

Adding MITHRIL to AMP guarantees no performance loss

compared to AMP, however, MITHRIL-AMP does not guar-

antee a better performance than MITHRIL-LRU as we see in

some of the traces. The reason MITHRIL-LRU can be better

than MITHRIL-AMP is that AMP turns some cache misses

into cache hits due to its sequential prefetching ability. Thus

the relationship seen by MITHRIL is jeopardized, and the

associations captured by MITHRIL can be inaccurate. Overall,

MITHRIL significantly improves hit ratio over PG and AMP.

Behavior on representative traces. To better illustrate the

hit ratio improvement, we select six traces (three from CP

and three from MSR) to show typical examples of large (top

two), modest (middle two) and small (bottom two) perfor-

mance gains for MITHRIL in Figure 5. The top two traces

show the cases where MITHRIL outperforms the correspond-

ing caching algorithm by at least doubling the hit ratio. The

middle two figures show the traces that have relatively high

hit ratios under LRU. Adding MITHRIL provides a modest
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performance improvement. In the bottom two traces, AMP

outperforms MITHRIL-LRU by being able to prefetch unseen

blocks. However, this can be changed by using MITHRIL

with AMP. Still, in these cases, MITHRIL-AMP usually does

not win much over AMP in terms of hit ratio because the hit

ratios of AMP are often already high, yielding limited poten-

tial benefit. In addition, MITHRIL can only prefetch blocks

that have already been seen, capping the maximum hit ratio

at 1 − cold miss ratio. PG is the only prefetching algorithm

in same category as MITHRIL. Its performance is unstable,

sometimes better than AMP, most of time worse than AMP.

For most traces, it outperforms pure LRU and is outdone by

MITHRIL.

MITHRIL is compatible with a range of caching algorithms.

The figures compare performance of using MITHRIL on top

of LRU, FIFO and AMP to that of the original cache replace-

ment algorithms. Adding MITHRIL consistently boosts hit

ratio, particularly for simpler cache replacement algorithms.

For example, by adding MITHRIL to FIFO, the performance

of MITHRIL-FIFO is similar to MITHRIL-LRU, which is

much better than FIFO. This property of MITHRIL opens

the possibility of using MITHRIL with particular cache re-

placement algorithms in appropriate situations, for instance

when running off of SSDs [24], MITHRIL with FIFO may

achieve the best performance. Investigating whether MITHRIL

can supplement a wider range of existing cache replacement

algorithms is left as future work.

5.3 Cache Size and Precision

To focus the discussion, we will hereby focus only on LRU

and MITHRIL-LRU. Our results so far are based on perfor-

mance at a single cache size. We now show the performance

of MITHRIL under a range of cache sizes. Figure 6 shows the

hit ratio curve (HRC) of LRU, PG and MITHRIL along with

the prefetching precision of the latter two. Shown in HRC,

the performance PG is always better than LRU, and as the

cache size increases, the gap between PG and LRU increases

due to more space allocated for PG’S pair-wise probability

matrix. However, the improvement of PG is limited due to its

large matrix. In contrast, MITHRIL provides a hit ratio boost

even at a small cache size.

The precision curve of PG has several peaks and troughs

because the size of its comprehensive conditional probability

matrix depends on cache size. As the cache size increases,

the matrix size grows. However, precision may not benefit

from the increasing probability matrix size due to wrong new

predictions. Similarly, the precision curve for MITHRIL is also

not monotonic, especially with a small cache size, due to the

eviction of prefetched blocks before being requested. When

comparing the prefetching precision of PG and MITHRIL,

we see that, in most situations, MITHRIL has better precision

than PG.
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Figure 5: Hit ratio of different algorithms. Example traces where Mithril

significantly improves hit rate (top two), where Mithril shows modest im-
provement (middle two), and where Mithril shows little or no performance
gain (bottom two).
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Figure 6: Hit ratio curve and prefetching precision of LRU, PG and
Mithril Left: Mithril outperforms LRU and PG. Right: The prefetching
precision of Mithril is higher than PG and both two curves are not mono-
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5.4 Effects of Parameters

MITHRIL uses several parameters that now investigate in iso-

lation in terms of impact on hit ratio and prefetching precision

using a representative CP trace (w94).

75



MITHRIL SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

3 4 5 6 7 8 9

maximum support

0.0

0.2

0.4

0.6

0.8

H
it

 R
a
ti

o

0.0

0.2

0.4

0.6

0.8

1.0

p
re

fe
tc

h
in

g
 p

re
c
is

io
n

Hit Ratio

prefetching precision

Hit Ratio

prefetching precision

(a) maximum support S

2 5 8 10 20 50 100 200

look ahead range

0.0

0.2

0.4

0.6

0.8

H
it

 R
a
ti

o

0.0

0.2

0.4

0.6

0.8

1.0

p
re

fe
tc

h
in

g
 p

re
c
is

io
n

Hit Ratio

prefetching precision

Hit Ratio

prefetching precision

(b) lookahead range Δ

1 2 3 4 5 8 10 20

prefetch list size

0.0

0.2

0.4

0.6

0.8

H
it

 R
a
ti

o

0.0

0.2

0.4

0.6

0.8

1.0

p
re

fe
tc

h
in

g
 p

re
c
is

io
n

Hit Ratio

prefetching precision

Hit Ratio

prefetching precision

(c) prefetching list size P

0.030.050.08 0.1 0.2 0.3 0.5

metadata size limit

0.0

0.2

0.4

0.6

0.8

H
it

 R
a
ti

o

0.0

0.2

0.4

0.6

0.8

1.0

p
re

fe
tc

h
in

g
 p

re
c
is

io
n

Hit Ratio

prefetching precision

Hit Ratio

prefetching precision

(d) maximum metadata size M

1 2 3 4 5 6

minimum support

0.0

0.2

0.4

0.6

0.8

H
it

 R
a
ti

o

0.0

0.2

0.4

0.6

0.8

1.0

p
re

fe
tc

h
in

g
 p

re
c
is

io
n

Hit Ratio

prefetching precision

Hit Ratio

prefetching precision

(e) minimum support R

ca
ch

e m
iss

each
 re

quest

evict
ion

m
iss

/evict
ion

recording position

0.0

0.2

0.4

0.6

0.8

H
it

 R
a
ti

o

0.0

0.2

0.4

0.6

0.8

1.0
p
re

fe
tc

h
in

g
 p

re
c
is

io
n

Hit Ratio

prefetching precision

Hit Ratio

prefetching precision

(f) effect of recording

Figure 7: Effect of parameters in Mithril.

Maximum support S decides the maximum allowed degree

of hotness of a block. This is decided by considering the row

length of the mining table. If a block is requested more than

S times before mining, it gets kicked out as a frequent block.

As shown in Figure 7a, S has a small effect on hit ratio and

prefetching precision since most of the frequent blocks are

already filtered out by an underlying caching layer. Recall

that MITHRIL records blocks only during cache misses.

Lookahead range Δ decides the maximum allowed times-

tamp difference for two blocks to be considered associated. It

is obvious that Δ should be a parameter related to the number

of concurrent running processes. If too large, non-associated

block pairs will be mistaken as associated, thus increasing the

false positive rate. On the other hand, being too small will re-

sult in many associations being ignored and thus a high false

negative rate. As shown in Figure 7b, when Δ is small, as Δ in-

creases, the hit ratio increases substantially, while prefetching

precision decreases slightly. After certain threshold, further

increasing Δ will not increase hit ratio. This is because the

best Δ should relate to the number of concurrent running ap-

plications (at least as large as it), the given trace shown in the

figure has its best Δ around 50.

Prefetching list size P determines the space that can be

used for storing associated blocks, which is the row length

of the prefetching table. Recall that when more than P asso-

ciated blocks are discovered, the old blocks are replaced in

a FIFO manner. Figure 7c shows that increasing P dramati-

cally reduces prefetching precision because a large P means

stale associations are also stored for prefetching. On the other

hand, the hit ratio first increases and then decreases with an

increasing P . We notice that setting P as 2 gives an acceptable

trade-off between hit ratio and precision across the various

datasets we considered.

Maximum metadata size M decides the maximum space

MITHRIL can use for the recording table, mining table and

prefetching table. As illustrated in Figure 7d, if M is too small,

there are not enough spaces for the prefetching table, dramat-

ically reducing the effect of MITHRIL. After a threshold,

further increasing M won’t increase the hit ratio. However,

setting M too large in situations that MITHRIL does not have

good performance will waste space which should be used for

caching. We thus recommend a default value of 10% of the

entire cache space based on traces we have tested.

Minimum support R has the largest effect on the perfor-

mance of MITHRIL. It decides when a request is ready for

mining and is the row length of the recording table. In Fig-

ure 7e, we can see that increasing R will increase prefetching

precision, while reducing the hit ratio. Two requests are re-

quired to appear closely R times to be considered associated,

and when we have a larger R, the requirement for being asso-

ciated is stricter, which diminishes the number of associations

and grows the confidence of discovered associations.

Different recording locations also have a large effect on

the performance of MITHRIL. As mentioned in Section 4, we

record only at cache misses, which reduces computation by

recording only the most important information. As shown in

Figure 7f, besides recording a) at cache miss, we can also

record b) when a block is evicted from cache, c) at cache miss

and eviction, or d) each time a request arrives. Using c) and

d) usually give more information to MITHRIL at a cost of

more computation. In other words, we can trade CPU cycles

for potentially better hit ratio and precision. As we observe

across the traces, recording at evictions (b) usually cannot

provide good performance; recording at evictions and misses

(c) occasionally provides similar performance to the other two

approaches a and d, but most of the time only slightly better

than recording at evictions (b). In contrast, recording at the

arrival of each request (d) usually gives the best performance

with the highest precision. As an alternative, recording at

cache misses (a) can greatly reduce the overhead of MITHRIL,

while, as we have evaluated in most traces, it provides less

than a 10% performance loss compared to recording at each

request.
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Figure 8: Latency and CPU usage of using no cache, LRU, Amp and
Mithril-LRU. On the top, each latency point is the average latency of
40000 requests. At the bottom, it shows the relatively increased CPU usage
of Mithril due to mining and prefetching, compared to LRU and Amp, the
increase is less than 1%.

Table 3: Latency Percentile (microseconds)

Percentile 50% 75% 90% 99%

no cache 6971 10403 13625 18072

LRU 5883 7452 10038 15801

AMP 3934 5097 6163 7765

Mithril 2551 3063 4173 10330

5.5 Real System Performance

Latency. A high hit ratio may not mean low latency in a real

system because of factors such as CPU overhead and late

prefetch. Especially for a history-based prefetching, the cost

of prefetching a random block is large. In Figure 8, we justify

the overhead compared with benefit. It shows the latency of

four approaches on CP trace w94: using no cache, using LRU

cache, using AMP and using LRU cache with a MITHRIL

prefetching layer. Compared to no cache, LRU reduces aver-
age latency by more than 26%, especially at the peaks, where
the no-cache system shows a high latency. Using a sequen-
tial prefetcher Amp, the latency further decreases by 32%
over LRU on average, whereas Mithril with LRU reduced
latency by 52% over LRU. Besides average latency, the la-

tency percentiles in Table 3 further illustrate the effectiveness

of MITHRIL on reducing latency. However, we do see that

at 99% percentile, MITHRIL has a higher latency over AMP,

which is caused by latency peaks discussed below.

Late prefetches. Although latency reduction due to MITHRIL

prefetching is evident, we also see that 22.4% of prefetches

are late, which means the arrival of prefetched blocks happen

after the time they are requested. Late prefetches affect the

performance of MITHRIL by wasting one disk read unless

caught by the disk controller.

MITHRIL warm up time. In Figure 8, focusing on the

first 5% percent of the requests in a system with MITHRIL,

we can see the there is no latency reduction at beginning, and

latency decrease as time goes from 0% to 10%. The decrease

occurs because MITHRIL needs sufficiently many requests

for warm-up before it conducts mining and prefetching.

Existence of latency peaks. MITHRIL does not eliminate

all latency peaks. The peaks stem chiefly from two phenom-

ena: they are due to long disk rotational latency or a burst

of requests, or a mix of these aspects. When the peaks occur

due to long disk rotational latency, MITHRIL can effectively

reduce latency by prefetching. One extreme case would be

if each block request demands the disk to rotate half way

to retrieve the content, causing peaks in a system without

MITHRIL. However, in systems with MITHRIL, associations

between these requests would be unveiled and harnessed. In

other words, MITHRIL would prefetch associated block into

the cache ahead of its request time, thus lowering latency. On

the other hand, if the latency peak is caused by a large num-

ber of outstanding I/Os [12], MITHRIL provides less benefit

because issuing prefetches only increases the burden on the

disk. Consequently, not all latency peaks can be removed by

MITHRIL.

CPU usage. MITHRIL is based on approximate association

mining, which might be CPU-intensive. As shown in the

figure, we see some CPU consumption increase for MITHRIL,

however, the increase is minor and within the limits afforded

by many storage systems.

5.6 MITHRIL Analysis

In this section, we analyze the behavior of MITHRIL un-

derlying its performance. Figure 9a shows the associations

discovered by MITHRIL after a full trace run. Both horizontal

and vertical axes are logical block addresses (LBA): if two

blocks bx and by are associated, a dot is placed at point (x , y).

The association plot clearly shows that MITHRIL not only dis-

covers sequential block associations, denoted by the diagonal

in the graph, but also many non-sequential block associations.

As mentioned earlier, MITHRIL is designed to catch the

mid-frequency blocks since frequent blocks are captured by

the underlying caching layer and rare blocks are by definition

not worth chasing after. Figure 9b and Figure 9c show the

hit count obtained by LRU and MITHRIL; the horizontal

axis is sorted by the frequency of blocks in the original trace.

LRU gets cache hits on most of the frequent blocks (left

part of the figure). For mid or low frequency blocks, LRU

shows a bushy image because whether LRU can catch a

mid or low frequency block depends on if the block shows

small-range locality. If a block shows small-range locality, it

can be caught by LRU. For example, if a block is accessed

only twice throughout the trace and the two accesses are just

separated by a few requests, then it will be captured by LRU.

However, if its two accesses are far away from each other,

then it won’t be captured by LRU. For MITHRIL, besides
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high-frequency blocks being captured, mid-frequency blocks

can also be captured because MITHRIL can predict its access

ahead of time. As shown in the figure, MITHRIL has higher hit

counts for most blocks in the mid-frequency range. These two

figures illustrate the crux of why MITHRIL provides a high hit

ratio: it discovers sequential associations and non-sequential
associations, capturing the mid-frequency blocks that tend to
be ignored by common cache replacement policies.

(a) Associations discovered by Mithril

(b) Hit count in LRU (c) Hit count in Mithril

Figure 9: Mithril Analysis. a): associations discovered by Mithril contains
both sequential associations and non-sequential associations. The four rect-
angular areas in the figure may represent two major applications that interact
with each other. b), c): hit count of blocks sorted by frequency in original
trace illustrates Mithril is able to capture mid-frequency blocks, while LRU

cannot.

6 Conclusion
Storage systems increasingly rely on effective caching layers

to sustain mounting demands for performance. We proposed

a novel general history-based prefetching layer, MITHRIL,

to supplement the caching layers. MITHRIL is based purely

on the logical timestamp of cache requests without any extra

hints, making it easy to use and integrate into existing systems.

We evaluated MITHRIL on 106 week-long CP traces and 29

70-day-long MSR traces of real storage systems in terms of

the hit ratio. Our experimental results suggest that MITHRIL

is lightweight compared to other history-based approaches,

and provides 7 × greater hit ratio over LRU and 36% greater

hit ratio over AMP sequential prefetching algorithm at modest

costs.

Combining effective cache replacement algorithms with

MITHRIL may create a low-overhead caching strategy for

capturing often overlooked mid-frequency items and bolster

cache performance in today’s cloud storage systems. To fur-

ther explore the capabilities of MITHRIL, future work will

further consider a wider range of cache replacement algo-

rithms and evaluate the performance gain from intelligent

prefetching. Finally, the MITHRIL algorithm would benefit

from being self-adaptive to remove the need for optimizing

parameters.
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