
Dr. Multicast: Rx for Data Center Communication Scalability∗

Ymir Vigfusson
Cornell University

Hussam Abu-Libdeh
Cornell University

Mahesh Balakrishnan
Cornell University

Ken Birman
Cornell University

Yoav Tock
IBM Haifa Research Lab

Abstract

Data centers avoid IP Multicast because of a se-
ries of problems with the technology. We propose
Dr. Multicast (the MCMD), a system that maps
traditional IPMC operations to either use a new
point-to-point UDP multisend operation, or to a
traditional IPMC address. The MCMD is de-
signed to optimize resource allocations, while si-
multaneously respecting an administrator-specified
acceptable-use policy. We argue that with the re-
sulting range of options, IPMC no longer represents
a threat and could therefore be used much more
widely.

1 Introduction

As data centers scale up, IP multicast (IPMC) [8]
has an obvious appeal. Publish-subscribe and data
distribution layers [6, 7] generate multicast distri-
bution patterns; IPMC permits each message to be
sent using a single I/O operation, reducing latency
both for senders and receivers (especially, for the
last receiver in a large group). Clustered application
servers [1, 4, 3] need to replicate state updates and
heartbeats between server instances. Distributed
caching infrastructures [2, 5] need to update cached
information. For these and other uses, IPMC seems
like a natural match.

Unfortunately, IPMC has earned a reputation as
a poor citizen. Routers must maintain routing state
and perform a costly per-group translation[11, 9].
Many NICs can only handle a few IPMC addresses;
costs soar if too many are used. Multicast flow con-
trol is also a black art. When things go awry, a mul-
ticast storm can occur, disrupting the whole data
center. Perhaps most importantly, management of
multicast use is practically unsupported.

Our paper introduces Dr. Multicast (the
MCMD), a technology that permits data center
operators to enable IPMC while maintaining tight

∗This work was supported by grants from AFRL, AFOSR,

NSF, Cisco and Intel.

control on its use. Applications are coded against
the standard IPMC socket interface, but IPMC
system calls are intercepted and mapped into one
of two cases:

• A true IPMC address is allocated to the group.

• Communication to the group is performed us-
ing point-to-point UDP messages to individual
receivers, using a new multi-send system call.

The MCMD tracks group membership, using a
gossip protocol. It translates each send operation
on a multicast group into one or more send opera-
tions, optimized for system objectives. Finally, to
implement this optimization policy, it instantiates
in a fault-tolerant fashion a service that computes
the best allocation of IPMC addresses to groups
(or to overlapping sets of groups), adapting as use
changes over time.

Users benefit in several ways:

• Policy: Administrators can centrally impose
traffic policies within the data center, such as
limiting the use of IPMC to certain machines,
placing a cap on the number of IPMC groups
in the system or eliminating IPMC entirely.

• Performance: The MCMD approximates the
performance of IPMC, using it directly where
possible. When a multicast request must be
translated into UDP sends, the multi-send sys-
tem call reduces overheads.

• Transparency and Ease-of-Use: Applications
express their intended communication pattern
using standard IPMC interfaces, rather than
using hand-coded implementations of what is
really an administrative policy.

• Robustness: The MCMD is implemented as a
distributed, fault-tolerant service.

We provide and evaluate effective heuristics for the
optimization problem of allocating the limited num-
ber of IPMC addresses, although brevity limits us
to a very terse review of the framework, the underly-
ing (NP -complete) optimization question, and the
models used in the evaluation.

1



Number of groups joined

P
a
ck

et
m

is
s

ra
te

(%
)

350300250200100502010521

50

40

30

20

10

0

Figure 1: Receiver packet miss rate vs. number of IPMC

groups joined

2 IPMC in the Data Center

Modern data centers often have policies legislating
against the use of IPMC, despite the fact that multi-
cast is a natural expression of a common data com-
munication pattern seen in a wide range of applica-
tions. This reflects a number of pragmatic consid-
erations. First, IPMC is perceived as a potentially
costly technology in terms of performance impact
on the routing and NIC hardware. Second, appli-
cations using IPMC are famously unstable, running
smoothly in some settings and yet, as scale is in-
creased, potentially collapsing into chaotic multi-
cast storms that disrupt even non-IPMC users.

The hardware issue relates to imperfect filtering.
A common scheme used to map IP group addresses
to Ethernet group addresses involves placing the
low-order 23 bits of the IP address into the low-
order 23 bits of the Ethernet address [8]. Since there
are 28 significant bits in the IP address, more than
one IP address can map to an Ethernet address.
The NIC maintains the set of Ethernet mappings
for joined groups and forwards packets to the ker-
nel only if the destination group maps to one of
those Ethernet addresses. As a result, with large
numbers of groups, the NIC may accept undesired
packets, which the kernel must discard.

Figure 1 illustrates the issue. In this experiment,
a multicast transmitter transmits on 2k multicast
groups, whereas the receiver listens to k multicast
groups. We varied the number of multicast groups k

and measured the CPU consumption as well as the
packet loss at the receiver. The transmitter trans-
mits at a constant rate of 15,000 packets/sec, with
a packet size of 8,000 bytes spread across all the
groups. The receiver thus expects to receive half

of that, i.e. 7,500 packets/sec. The receiver and
transmitter have 1Gbps NICs and are connected
by a switch with IP routing capabilities. The ex-
periments were conducted on a pair of single core
IntelR© Xeon

TM

2.6GHz machines. Figure 1 shows
that the critical threshold that the particular NIC
can handle is roughly 100 IPMC groups, after which
throughput begins to fall off.

The issue isn’t confined to the NIC. Performance
of modern 10Gbps switches was evaluated in a re-
cent review [10] which found that their IGMPv3
group capacity ranged between as little as 70 and
1,500. Less than half of the switches tested were
able to support 500 multicast groups under stress
without flooding receivers with all multicast traffic.

The MCMD addresses these problems in two
ways. First, by letting the operator limit the num-
ber of IPMC addresses in use, the system ensures
that whatever the limits in the data center may
be, they will not be exceeded. Second, by optimiz-
ing to use IPMC addresses as efficiently as possi-
ble, the MCMD arranges that the IPMC addresses
actually used will be valuable ones – large groups
that receive high traffic. As seen below, this is done
not just by optimizing across the groups as given,
but also by discovering ways to aggregate overlap-
ping groups into structures within which IPMC ad-
dresses are shared by multiple groups, permitting
even greater efficiencies.

The perception that IPMC is an unstable tech-
nology is harder to demonstrate in simple experi-
ments: as noted earlier, many applications are per-
fectly stable under most patterns of load and scale,
yet capable of being extraordinarily disruptive. The
story often runs something like this. An application
uses IPMC to send to large numbers of receivers at a
substantial data rate. Some phenomenon now trig-
gers loss. The receivers detect the loss and solicit
retransmissions, but this provokes a further load
surge, exacerbating the original problem. A mul-
ticast storm ensues, saturating the network with
redundant retransmission requests and duplicative
multicasts. With MCMD the operator can safely
deploy such an application: if it works well, it will
be permitted to use IPMC; if it becomes problem-
atic, it can be mapped to UDP merely by chang-
ing the acceptable use policy. More broadly, the
MCMD encourages developers to express intent in
a higher-level form, rather than hand-coding what
is essentially an administrative policy.

3 Design

The basic operation of MCMD is simple. It trans-
lates an application-level multicast address used by

2



Figure 2: Overview of the MCMD architecture

an application to a set of unicast addresses and
network-level multicast addresses. MCMD has two
components (see figure 2):

• A library module responsible for the mecha-
nism of translation. It intercepts outgoing mul-
ticast messages and instead sends them to a set
of unicast and multicast destinations.

• A mapping module responsible for the policy
of translation. It determines the mapping from
each application-level address and a set of uni-
cast and network-level multicast addresses.

3.1 Library Module

The MCMD library module exports a <sockets.h>

library to applications, with interfaces identical to
the standard POSIX version. By overloading the
relevant socket operations, MCMD can intercept
join, leave and send operations. For example:

• setsockopt() is overloaded so that an invo-
cation with the IP ADD MEMBERSHIP or
IP DROP MEMBERSHIP option as a param-
eter results in a ‘join’ message being sent to
the mapping module. In this case, the stan-
dard behavior of setsockopt – generating an
IGMP message – is suppressed.

• sendto() is overloaded so that a send to a class
D group address is intercepted and converted
to multiple sends to a set of addresses from the
kernel.

The library module interacts with the mapping
module via a UNIX socket. It pulls the translations
for each application-level group from the mapping

Figure 3: Two under-the-hood mappings in MCMD, a di-

rect IPMC mapping on the left and point-to-point mapping

on the right.

module. Simultaneously, it pushes information and
statistics about grouping and traffic patterns used
by the application to the local mapping module.

3.2 Mapping Module

The mapping module plays two important roles:

• It acts as a Group Membership Service
(GMS), maintaining the membership set of
each application-level group in the system.

• It allocates a limited set of IPMC addresses
to different sets of machines in the data center
and orchestrates the IGMP joins and leaves re-
quired to maintain these IPMC groups within
the network.

The mapping module uses a gossip-based control
plane using techniques described in [13]. The gossip
control plane is extremely resilient to failures and
includes a decentralized failure detector that can
be used to locate and eject faulty, i.e. irresponsive,
machines. It imposes a stable and constant over-
head on the system and has no central bottleneck,
irrespective of the number of nodes.

The gossip-based control plane essentially repli-
cates mapping and grouping information slowly and
continuously throughout the system. As a result,
the mapping module on any single node has a global
view of the system and can immediately resolve an
application-level address to a set of unicast and mul-
ticast addresses without any extra communication.
The size of this global view is not prohibitive; for
example, we can store membership and mapping in-
formation for a 1000-node data center within a few

3



MB of memory. For now, we’re targetting systems
with a low enough rate of joins, leaves and failures
per second to allow for global replication of control
information. In the future, we’ll replace the global
replication scheme with a more focused one to elim-
inate this restriction.

Knowledge of global group membership is suffi-
cient for the mapping module at each node to trans-
late application-level group addresses into network-
level unicast addresses. To fulfill the second func-
tion of allocating IPMC addresses in the system, an
instance of the specific mapping module running on
a particular node in the system acts as a leader. It
aggregates information from other mapping mod-
ules (via the gossip control plane) and calculates
appropriate allocations of IPMC addresses to man-
date within the data center. The leader can be cho-
sen according to different strategies – one simple
expedient is to query the gossip layer for the old-
est node in the system. The failure of the leader is
automatically detected by the gossip layer’s inbuilt
failure detector, which also naturally updates the
pointer to the oldest node.

3.2.1 Gossip Control Plane

We first describe an implementation of the mapping
module using only the gossip-based control plane.
However, the Achilles heel of gossip at large system
sizes is latency – the time it takes for an update
to propagate to every node in the system. Conse-
quently, we then describe approaches to add extra
control traffic for certain kinds of critical updates
– in particular, IPMC mappings and group joins –
that need to be distributed through the system at
low latencies.

Gossip-based Failure Detector: The
MCMD control plane is a simple and powerful
gossip-based failure detector identical to the one
described by van Renesse [13]. Each node main-
tains its own version of a global table, mapping
every node in the data center to a timestamp or
heartbeat value. Every T milliseconds, a node up-
dates its own heartbeat in the map to its current
local time, randomly selects another node and rec-
onciles maps with it. The reconciliation function
is extremely simple – for each entry, the new map
contains the highest timestamp from the entries in
the two old maps. As a result, the heartbeat times-
tamps inserted by nodes into their own local maps
propagate through the system via gossip exchanges
between pairs of nodes.

When a node notices that the timestamp value for
some other node in its map is older than T1 seconds,
it flags that node as ‘dead’. It does not immediately

delete the entry, but instead maintains it in a dead
state for T2 more seconds. This is to prevent the
case where a deleted entry is reintroduced into its
map by some other node. After T2 seconds have
elapsed, the entry is truly deleted.

The comparison of maps between two gossiping
nodes is highly optimized. The initiating node
sends the other node a set of hash values for differ-
ent portions of the map, where portions are them-
selves determined by hashing entries into different
buckets. If the receiving node notices that the hash
for a portion differs, it sends back its own version of
that portion. This simple interchange is sufficient
to ensure that all maps across the system are kept
loosely consistent with each other. An optional step
to the exchange involves the initiating node trans-
mitting its own version back to the receiving node,
if it has entries in its map that are more recent than
the latter’s.

Gossip-based Communication: Thus far, we
have described a decentralized gossip-based failure
detector. Significantly, such a failure detector can
be used as a general purpose gossip communication
layer. Nodes can insert arbitrary state into their
entries to gossip about, not just heartbeat times-
tamps. For example, a node could insert the av-
erage CPU load or the amount of disk space avail-
able; eventually this information propagates to all
other nodes in the system. The reconciliation of
entries during gossip exchanges is still done based
on which entry has the highest heartbeat, since that
determines the staleness of all the other information
included in that entry.

Using a gossip-based failure detector as a control
communication layer has many benefits. It provides
extreme resilience and robustness for control traffic,
eliminating any single points of failure. It provides
extremely clean semantics for data consistency –
a node can write only to its own entry, eliminat-
ing any chance of concurrent conflicting writes. In
addition, a node’s entry is deleted throughout the
system if the node fails, allowing for fate sharing
between a node and the information it inserts into
the system.

Group Membership Service: The mapping
module uses the gossip layer to maintain group
membership information for different application-
level groups in the system. Each node maintains
in its gossip entry – along with its heartbeat times-
tamp – the set of groups it belongs to, updating this
whenever the library module intercepts a join or a
leave. A simple scan of the map is sufficient to gen-
erate an alternative representation of the member-
ship information, mapping each group in the system

4



to all the nodes that belong to it. If a node fails, its
entry is removed from the gossip map; as a result,
a subsequent scan of the map generates a groups-
to-nodes table that excludes the node from all the
groups it belonged to.

Mapping Module Leader: As mentioned pre-
viously, the gossip layer informs the mapping mod-
ule of the identity of the oldest node in the system,
which is then elected as a leader and allocates IPMC
addresses. To distribute these allocations back into
the system, the leader can just update its own en-
try in the gossip map with the extra IPMC infor-
mation. When a receiver is informed of a relevant
new mapping, it issues the appropriate IGMP mes-
sages required to join or leave the IPMC group as
mandated by the mapping module.

A “pure” gossip protocol can have large propa-
gation delays, resulting in undesirable effects such
as senders transmitting to IPMC groups before re-
ceivers can join them. To mitigate these latency
effects, the leader periodically broadcasts mappings
at a fixed, low rate to the entire data center. The
rate of these broadcasts is tunable; we expect typ-
ical values to be a few packets every second. The
broadcast acts purely as a latency optimization over
the gossip layer; if a broadcast message is lost at a
node, the mapping is eventually delivered to it via
gossip.

Latency Optimization of Joins: We are also
interested in minimizing the latency of a join to an
application-level multicast group; i.e., after a node
issues a join request to a group, how much time
elapses before it receives data from all the senders
to that group? While the gossip layer will eventu-
ally update senders of the new membership of the
group, its latency may be too high to support appli-
cations that need fast membership operations. The
latency of leave operations is less critical, since a
receiver that has left a group can filter out mes-
sages arriving in that group from senders who have
stale membership information until the gossip layer
propagates the change.

In MCMD, we explore two options to speed up
joins. The first method is to have receivers broad-
cast joins to the entire data center. For most data
center settings, this is a viable option since the rate
of joins in the system is typically quite low. This ap-
proach is drawn on figure 2. The second method is
meant for handling higher churn; it involves explic-
itly tracking the set of senders for each group via the
gossip layer. Since each node in the system knows
the set of senders for every group, a receiver joining
a group can directly send the join using multiple
unicasts to the senders of that group. The second

option incurs more space and communication over-
head in the gossip layer but is more scalable in terms
of churn and system size.

Switching between these two options can be done
by a human administrator or automatically by a
designated node, such as the mapping module, sim-
ply by observing the rate of membership updates
in the system via the gossip layer. Once again, the
broadcasts or direct unicasts do not have to be reli-
able, since the gossip layer will eventually propagate
joins throughout the system.

3.3 Kernel Multi-send System Call

Sending a single packet to a physical IPMC group
is cheap since the one-to-many multiplexing is done
on a lower level by routing or switching hardware
in the network. However, when IPMC resources are
exhausted, the group-address mapping in MCMD
will map a logical IPMC group to a set of unicast
addresses corresponding to its members. Thus a
single sendto()-call at the interface would produce
a series of sends at the library and kernel level of
identical packets to a number of physical addresses.
We modified the kernel to help alleviate the over-
head caused by context-switching during the list of
sends. We implemented a multi-send system call on
the Linux 2.6.24 kernel with a sendto()-like inter-
face that sends a message to multiple destinations.

4 Optimizing Resource Use

Beyond making IPMC controllable and hence safe,
the MCMD incorporates a further innovation. We
noted that our goal is to optimize the limited use of
IPMC addresses. Such optimization problems are
often hard, and indeed the optimization problem
that arises here we have proven to be NP -complete
(details omitted for brevity). Particularly difficult
is the problem of mapping multiple application-level
groups to the same IPMC address: doing so shares
the address across a potentially large set of groups,
which is a good thing, but finding the optimal pat-
tern for sharing the addresses is hard.

A topic is a logical multicast group. Our algo-
rithm can be summarized as follows.

• Find and merge all identically overlapping top-
ics into groups, aggregating the traffic reports.

• Sort groups in descending order by the product
of the reported traffic rate and topic size.

• For each group G, assign an IPMC address to
topic G, unless the global or user address quota
for ≥ 3 members have been exceeded.

5



• Enlist all remaining users in G for point-to-
point communication over unicast.

Thus a large topic with high traffic is more likely
to be allocated a dedicated IPMC address. Other
groups might communicate over both IPMC and
point-to-point unicast for members that have ex-
ceeded their NIC IPMC capacity, and yet others
might perform multicast over point-to-point unicast
entirely.

5 Related Work

Brevity prevents a detailed comparison of our work
with previous work of [14, 15]; key differences stem
from our narrow focus on data center settings. Our
mathematical framework extends that of [12], but
instead of inexact channelization we investigate zero
filtering.

6 Conclusion

Many major data center operators legislate against
the use of IP multicast: the technology is perceived
as disruptive and insecure. Yet IPMC offers very at-
tractive performance and scalability benefits. Our
paper proposes Dr. Multicast (the MCMD), a rem-
edy to this conundrum. By permitting operators to
define an acceptable use policy (and to modify it at
runtime if needed), the MCMD permits active man-
agement of multicast use. Moreover, by introducing
a novel scheme for sharing scarce IPMC addresses
among logical groups, the MCMD reduces the num-
ber of IPMC addresses needed sharply, and ensures
that the technology is only used in situations where
it offers significant benefits.

References

[1] BEA Weblogic. http://www.bea.com/

framework.jsp?CNT=features.htm&FP=

/content/products/weblogic/server/,
2008.

[2] GEMSTONE GemFire. http://www.

gemstone.com/products/gemfire/

enterprise.php, 2008.

[3] IBM WebSphere. http://www-01.ibm.com/

software/webservers/appserv/was/, 2008.

[4] JBoss Application Server. http://www.jboss.
org/, 2008.

[5] Oracle Coherence. http://www.oracle.com/

technology/products/coherence/index.

html, 2008.

[6] Real Time Innovations Data Distribution Ser-
vice. http://www.rti.com/products/data_

distribution/, 2008.

[7] TIBCO Rendezvous. http://www.tibco.

com/software/messaging/rendezvous/

default.jsp, 2008.

[8] Deering, S. Host Extensions for IP Multicas-
ting. Network Working Request for Comments
1112 (August 1989) (1989).

[9] Fei, A., Cui, J., Gerla, M., and Falout-

sos, M. Aggregated multicast: an approach
to reduce multicast state. Global Telecommu-
nications Conference, 2001. GLOBECOM’01.
IEEE 3 (2001).

[10] Newman, D. Multicast performance
differentiates across switches. http:

//www.networkworld.com/reviews/2008/

032408-switch-test-performance.html,
2008.

[11] Rosenzweig, P., Kadansky, M., and

Hanna, S. The Java Reliable Multicast Ser-
vice: A Reliable Multicast Library. Sun Labs
(1997).

[12] Tock, Y., Naaman, N., Harpaz, A., and

Gershinsky, G. Hierarchical clustering of
message flows in a multicast data dissemina-
tion system. In IASTED PDCS (2005), S. Q.
Zheng, Ed., IASTED/ACTA Press, pp. 320–
326.

[13] van Renesse, R., Minsky, Y., and Hay-

den, M. A gossip-based failure detection ser-
vice. In Middleware’98, IFIP International
Conference on Distributed Systems Platforms
and Open Distributed Processing (England,
September 1998), pp. 55–70.

[14] Wong, T., and Katz, R. An analysis of
multicast forwarding state scalability. In ICNP
’00: Proceedings of the 2000 International
Conference on Network Protocols (Washing-
ton, DC, USA, 2000), IEEE Computer Society,
p. 105.

[15] Wong, T., Katz, R. H., and McCanne,

S. An evaluation on using preference clustering
in large-scale multicast applications. In INFO-
COM (2) (2000), pp. 451–460.

6


