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Abstract
IP Multicast (IPMC) in data centers becomes disruptive
when the technology is used by a large number of groups, a
capability desired by event notification systems. We trace
the problem to root causes, and introduceDr. Multicast
(MCMD), a system that eliminates the issue by mapping
IPMC operations to a combination of point-to-point unicast
and traditional IPMC transmissions guaranteed to be safe.
MCMD optimizes the use of IPMC addresses within a data
center by merging similar multicast groups in a principled
fashion, while simultaneously respecting hardware limits
expressed through administrator-controlled policies. The
system is fully transparent, making it backward-compatible
with commodity hardware and software found in modern
data centers. Experimental evaluation shows that MCMD
allows a large number of IPMC groups to be used with-
out disruption, restoring a powerful group communication
primitive to its traditional role.

1. Introduction
As data center networks scale out, the software stack run-
ning on them is increasingly oriented towards one-to-many
(multicast) communication patterns. Services such as Face-
book and Twitter are supported by multicast-centric ar-
chitectures. Publish-subscribe and other enterprise service
bus layers [24, 26] use multicast to push data to large
numbers of receivers simultaneously. This capability al-
lows clustered application servers to replicate state updates
and heartbeats between server instances [6, 16, 17], and
to maintain coherent caches by invalidating or updating
cached information on large numbers of nodes [15, 23].

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys ’10 April 13-16, Paris.
Copyright c© 2010 ACM [to be supplied]. . . $10.00

IP Multicast (IPMC) [12] permits each message to be sent
using a single I/O operation, reducing latency and load at
end-hosts and in the network. It is included by many of
these products as a communication option.

But modern data centers rarely enable IPMC commu-
nication because of problems with the technology. IPMC
lacks reliable packet dissemination [5, 14], security [19],
flow control [31] and scalability in the number of groups
[10, 18]. We focus on the last point — preventing disrup-
tions that may arise when a large number of IPMC groups
are in use. Our goal is to mend IPMC group scalability in
a manner that complements solutions to the other problems
seamlessly. Additional goals are efficiency, transparency
and robustness of our solution under stress.

IPMC adoption on the wide-area Internet has been lim-
ited for a variety of reasons, including economic concerns
(how ISPs should charge for IPMC traffic) and security
issues (IPMC can be exploited for distributed denial-of-
service attacks) [13, 20]. Accordingly, although we believe
that MCMD can be extended for WAN settings, this paper
focuses only on data centers.

Our key insight is that IPMC addresses are scarce and
sensitive resources. When too many are used, network
routers and network interface cards (NICs) malfunction
in ways that trigger heavy packet loss. As a data center
scales up, the aggregated number of IPMC addresses used
by the varied applications can easily exceed these limits.
One solution is to just require that everything run over
TCP. For example, one can modify enterprise service bus
and publish-subscribe infrastructure components to create
a TCP connection between every source and each of its
receivers, sending each packet once per receiver. For situ-
ations with large fanouts, some form of application layer
overlay could be deployed. Clearly, such an approach will
be safe, but it will be more complex and slower than IPMC,
which sends just a single packet.

MCMD solves this problem using a novel clustering al-
gorithm to efficiently allocate a limited number of IPMC
addresses to selected groups (or sets of groups), with the



number selected to reflect hardware capacity and local ad-
ministrative policy. Groups that do not receive an IPMC
address use unicast communication.

MCMD is implemented as a layer that resides between
the application and the operating system network stack.
The system efficiently and transparently intercepts standard
IPMC system calls, translating each IPMC group address
used by the application into a combination of IPMC and
unicast addresses. The translation for a group spans two
extremes:

• A true IPMC address is allocated to the group.
• Communication to the group is performed using point-

to-point unicast messages to individual receivers.

We also examined other options, such as mapping a sin-
gle application group to multiple IPMC addresses, but con-
cluded that the two cases listed above suffice.

MCMD makes it safe to use a standard, widely de-
ployed communication option that fell into disuse. Our
hope is that IPMC might now be revisited for a wide range
of possible uses.

The contributions of this paper are thus as follows:

• An approach to mitigate IPMC scalability problems
within data centers, which optimizes the allocation of
multicast addresses to application layer groups.
• A scalable and robust implementation that resides trans-

parently between the application and the network stack.
• An evaluation using real-world subscription patterns

based on a trace collected from a widely deployed com-
mercial application server.

Assumptions.We focus on an administratively homo-
geneous data center that runs trusted, non-malicious IPMC
applications. Our solution will complement any mecha-
nism for IPMC reliability, total ordering or security by
virtue of residing in a layer below the IPMC interface.
As such, minor packet loss is acceptable. We further as-
sume that the data center network is primarily switched,
with multiple levels of switching hierarchy and a top-level
gateway router. Finally, we assume that the data center
is strongly biased towards commodity hardware and soft-
ware, and hence would not accept non-transparent inter-
ventions that might require modifying applications, or non-
standard hardware solutions that might endow NICs or
routers with unusually high capacities for IPMC addresses.

Road map.We start by looking closely at the limitations
of IPMC in data centers. The policy primitives and archi-
tecture of MCMD are discussed in section 3. We formal-
ize the central MCMD optimization problem and provide
a greedy algorithm for solving it in section 4. Our evalua-
tion is in two parts, first we evaluate the algorithm on vari-
ous data sets in section 5, and then we evaluate a prototype
of MCMD experimentally in section 6. The last two sec-
tions discuss related work and then offer some concluding
thoughts.

Alcatel-Lucent OmniSwitch OS6850-48X 260
Cisco Catalyst 3750E-48PD-EF 1,000
D-Link DGS-3650 864
Dell PowerConnect 6248P 69
Extreme Summit X450a-48t 792
Foundry FastIron Edge X 448+2XG 511
HP ProCurve 3500yl 1,499

Table 1. Group capacity on switches.Maximum number of
multicast groups supported by 10Gbps switches, according to a
NetworkWorld study [22].

2. IPMC Scalability Problems
In this section we touch upon the factors that combine to
limit IPMC group scalability in data centers.

2.1 Tragedy of the Commons

A tragedy of the commonsis said to occur when an indi-
vidually effective tactic (grazing one’s sheep on the com-
mons, in the original formulation) is widely adopted within
a community. The individual use is sustainable but not the
collective behavior: overgrazed, the commons are denuded.

In a data center, the communications network is a com-
mons: a shared space on which every application relies.
Our focus is on the limited IPMC state space on NICs and
switches on commodity hardware: filtering becomes inef-
fective when a large number of groups are used, and this
can burden end-host kernels with high rates of unwanted
traffic, overwhelming receivers who in turn begin dropping
packets. IPMC will only work properly if the number of
IPMC groups, both in aggregate and for individual NICs,
can be controlled so that the hardware limits are not ex-
ceeded. This creates a tension: to scale services up, one
wants to massively replicate data, for which IPMC has ob-
vious appeal. Yet if no measures are taken to protect the
network, an unbounded demand for IPMC resources could
easily arise.

Data centers that permit applications to use IPMC
quickly encounter this issue. To scale applications up, mod-
ern data centers clone them, running many side-by-side in-
stances. If such a service usesk IPMC addresses,n clones
will use nk of them. Thus even given individually “safe”
services, by running a collection of them or cloning some to
handle more clients, one can generate a collective demand
that exceeds the finite capacity.

Membership churn. When a node joins or leaves an
IPMC group, the router receives an IGMP packet and must
update its forwarding tables. Normally, applications joinor
leave groups infrequently and this cost will be negligible.
However, in poorly designed or malfunctioning applica-
tions, high rates of join/leave events could arise, overload-
ing the router and degrading the entire data center network.



2.2 Group Capacity on Switches

We noted that the most fundamental problem is the lim-
ited capacity available on devices for storing membership
information. Network Ethernet switches vary in sophistica-
tion, ranging from layer 2 switches that broadcast all mul-
ticast traffic to switches that operate at higher layers or per-
form IGMP snooping and track multicast group member-
ship in memory. The memory to store group membership
is bounded, so what happens when the capacity is reached?
Some IGMP-aware switches silently ignore membership
information beyond a threshold number of groups [23].
Others begin forwarding IPMC messages on all network
segments; it will fall to the NICs to filter the unwanted traf-
fic. This behavior is also seen when a data center router is
overloaded with too many IPMC addresses: routers employ
filtering mechanisms that can become inaccurate, causing
IPMC to behave like a broadcast.

A recent review of the performance of modern 10Gbps
network switches found that their IGMPv3 multicast group
capacity ranged between 70 and 1,500 [22], as shown in
Table 1. Less than half of the switches tested were able to
support 500 multicast groups under stress.

2.3 Filters on Network Interface Cards

Unfortunately, end-host NICs also have limited space to
store group membership. To filter incoming multicast pack-
ets, a typical end-host NIC uses a combination of a perfect
check against a small set of addresses, as well as an im-
perfect check against a hashed location within a table. The
latter check is effectively a single-hash Bloom filter.

Stevenset al. [25] cites one commercial NIC as having
a perfect matching set of 16 addresses and an imperfect
matching table of 512 bits, another NIC as having a perfect
matching set of 80 addresses with no imperfect matching
table, and older NICs as supporting only imperfect match-
ing with a 64-bit table. Even the best of these would accept
messages to random IPMC addresses with probability1

2

once a node has joined 360 groups.

2.4 Repercussions

These limitations add up to trouble. If these limits are
exceeded, every IPMC packet sent to groups above the
limit will become a broadcast, forwarded to every node
in the data center, received by every NIC and in effect
dumped onto the operating system stack. An operating
system can silently filter and discard unwanted traffic at
low data rates, but high rates of aggregated IPMC traffic of
multiple groups is a different matter. The operating system
will be overwhelmed and drop incoming packets of all
kinds: not just IPMC packets, but also unicast UDP and
TCP. TCP will interpret the loss as a signal to throttle back.

Packet loss.We conducted an experiment to try to pro-
voke packet loss. A multicast sender transmits on2k multi-
cast groups, whereas the receiver listens to onlyk of those
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Figure 1. IPMC scalability issues.Packet loss rate at a receiver
as multicast traffic is divided among more IPMC groups.

multicast groups. The sender transmits 8,000 byte packets
at a constant rate of 15,000 packets/sec, and divides the
traffic among the2k multicast groups in the system, so
the receiver expects to receive half of the traffic, or 7,500
packets/sec. The extra groups simulate background multi-
cast traffic that is normally filtered out by the switch and
NIC. The sender and receiver both have 1Gbps NICs and
are connected by an IGMP-aware switch.

We varied the number of multicast groupsk and mea-
sured the packet loss at the receiver. The results show that
the hardware can handle roughly 200 IPMC groups before
high CPU load and packet loss ensues. The resulting packet
loss rate as a function ofk can be seen in Figure 1. Our
findings confirm the intuition given above.

Multicast storms. Even modest levels of IPMC packet
loss due to overload can dramatically impact higher layers
in the software stack, and will stress any IPMC reliability
layer. For example, with SRM [14], a slow receiver who
has lost packets will continuously multicast retransmission
requests to the group, potentially provoking a multicast
storm of retransmissions by other receivers that slows down
the entire group and causes further packet loss—further
cascading to disrupt the entire data center [6, 7].

3. Design and Implementation
The basic operation of MCMD is simple. It translates an
application-level multicast address used by an application
to a set of unicast addresses or a network-level multicast
address, as shown in Figure 2. The translation is governed
by an administrator specified policy for the data center, as
described in the following subsection.

MCMD consists of two primary components:

• A library module overloads the standard socket inter-
face and allows MCMD to be transparently loaded into
applications.
• An agentdaemon is responsible for implementing the

user-defined policy and the application-level multicast
mapping.



Figure 2. Translation. Two under-the-hood mappings in
MCMD, point-to-point unicast mapping (top) and a direct IPMC
mapping (bottom).

Each node in the system has a running agent, and one of
these agents is designated as aleader that periodically is-
sues multicast group mappings. The mapping information
is replicated across all the agents via a gossip layer, and
an additional urgent broadcast channel is used to quickly
disseminate urgent updates. Figure 3 highlights the differ-
ent components of MCMD. We will detail the design and
implementation of both components in this section.

Notice that when using MCMD, there is an impor-
tant difference between application-level IPMC groups and
network-level IPMC groups. With MCMD, the former be-
comes a purely logical abstraction seen by applications.
The latter are the physical addresses used by the hardware,
but multiple logical groups can share the same physical ad-
dress, and these addresses are under MCMD control.

3.1 Policy

MCMD allows administrators to mitigate IPMC group
scalability concerns using the following knobs:

• limit-IPMC-node(i, mi): Node i is allowed to join at
mostmi network-level IPMC groups.
• limit-IPMC(m): A maximum ofm IPMC groups can be

used within the data center.

The use of network-level IPMC can be disabled system-
wide or at an individual nodei by respectively setting
m = 0 or mi = 0.

Setting the policy. The policy can be dynamically
changed by updating a configuration file at any agent, and
the changes will propagate to other agents via gossip and
the urgent broadcast channel. In practice, we imagine a
mixture of hard policy limits calibrated to match router
and NIC characteristics, with soft policies: MCMD can
be extended to support fine-grained access-control policy
primitives and rate-limiting, enabling administrators toal-
low or deny specific applications from joining particular
application-level groups, or to allow operators to specify
triggers for events such as high rates of messages or packet
loss. Changes take effect quickly, permitting a level of se-

Figure 3. The MCMD architecture.

curity and offering the administrator a means of blocking
IPMC use by buggy applications.

3.2 Library Module

The library module exports a standard IP Multicast in-
terface to applications [12]. By overloading the relevant
socket operations, MCMD intercepts join, leave and send
operations. For example:

• In the overloaded version ofsetsockopt(), invoca-
tions withe.g.theIP ADD MEMBERSHIP parameter will
be intercepted by the library module. An IGMP join
message will only be sent if the application-level IPMC
address is mapped to a new network-level IPMC ad-
dress.
• sendto() is overloaded so that a send to an application-

level IPMC group address is intercepted and converted
to multiple sends to a list of addresses.

Interaction with agent. The library module interacts
with the agent daemon via a UNIX socket, and periodi-
cally pulls and caches the list of IPMC groups it is sup-
posed to join as well as translations for the application-
level groups it wants to send data to. The library module
may receive invalidation messages from the agent, causing
the library module to refresh its cached entries. Simultane-
ously, the library module pushes information and statistics
about grouping and traffic patterns used by the application
to the agent. A traffic pattern is an exponential-average of
the message rateλg received in application-level groupg.

3.3 The MCMD Agent

The agent is a background daemon process that runs on
every node in the system. Each agent instance acts as a
mapping module, maintaining the following pieces of in-
formation that are replicated on every agent in the system
— collectively referred to as theagent state:

• Membership sets:a map from each node to the application-
level groups within which it receives messages.
• Sender sets:a map from each node to the application-

level groups in which it sends messages.



• Group translations:a map from application-level groups
to a set of unicast addresses, a single network-level
IPMC address, or both.

Each agent in the system has read-access to a locally repli-
cated copy of the agent state. Write-access to the agent
state, however, is strictly controlled. Each node manages
its own membership set and its sender set. The group trans-
lations may only be modified by the leader agent. When
any agent, leader or not, writes to its local copy of the agent
state, the change is propagated to other agents in the system
via a gossip layer, which guarantees eventual consistency
of agent state replicas. Since each item in the agent state
has exactly one writer, there are no conflicts over multiple
concurrent updates to the agent-state.

In large deployments of MCMD, replicating the entire
agent state on every node may be infeasible. To reduce the
network overhead needed for replication, the administrator
can opt to deploy agents on a subset of the nodes in the
data centers. However, this can increase the load on these
agents since more library modules will rely on each agent
for receiving and sending updates. We discuss ways to
accommodate very large scales in Section 4.2.

Group translations. The leader agent uses the group
membership and sender information to determine the best
set of translations from application-level groups to network-
level IPMC addresses. Once these translations are written
to the leader’s local state, the gossip layer disseminates
the updates to other agents in the system, which read the
translations off their local replicated copy of the agent state
and direct their corresponding library modules to join and
leave the appropriate IGMP groups. If present, groups with
no receivers are mapped to empty lists, and groups with ex-
actly one receiver are mapped to unicast, while non-trivial
groups are subjected to our translation algorithm. Section
4 describes how the leader allocates network-level IPMC
resources to application-level multicast groups.

State replication. We use a gossip-based failure detec-
tor [28] to replicate the agent state across all the agents.
Each node maintains its own version of a global table, map-
ping every node in the system to a time-stamp or heart-
beat value. EveryT milliseconds, a node updates its own
heartbeat in the map to its current local time, randomly se-
lects another node and reconciles maps with it. The recon-
ciliation function is simple – for each entry, the new map
contains the highest time-stamp from the entries in the two
old maps. As a result, the heartbeat timestamps inserted by
nodes into their own local maps propagate through the sys-
tem via gossip exchanges between pairs of nodes.

The comparison of maps between two gossiping nodes
is highly optimized. The initiating node sends its peer a
set of hash values for different portions of the map, where
portions are themselves determined by hashing entries into
different buckets. If the receiving node notices that the hash
for a portion differs, it sends back its own version of that

portion. This interchange is sufficient to ensure that all
maps across the system are kept loosely consistent with
each other. An optional step to the exchange involves the
initiating node transmitting its own version back to the
receiving node if it has entries in its map that are more
recent than the latter’s.

Urgent broadcast channel.Gossip is a robust way to
replicate agent state data across multiple nodes, but can
be slow. We use an urgent notifications broadcast channel
to quickly disseminate important updates, and to ensure
that nodes are responsive to sudden changes in the state
of the system, in particular to membership and mapping
information. The channel is used for three types of events.

New receiver:When a new receiver joins a group, its
agent updates the local version of agent state via gossip and
simultaneously sends unicast notifications to every node
listed in the agent state as a sender to that group, as well
as the leader. As a result, senders can immediately include
the new receiver in their transmissions. In addition, the new
receiver’s agent contacts the leader agent for updates to the
sender set of that group; if the leader reports back with new
senders not yet reflected in the receiver’s local copy of the
agent state, the receiver’s agent sends them notifications as
well.

New sender:When a new sender starts transmitting to a
group, the agent running on it updates the sender set of the
group on its own local version of the global agent state, and
simultaneously sends a notification to the leader agent. The
leader agent responds with the latest version of the group
membership information for that particular group.

Translation map change:When the leader agent creates
or modifies a translation, it sends notification messages
to all the affected nodes — receivers who should join or
leave IPMC groups to conform to the new translation, and
senders who need to know the new translation to transmit
data to the group. These messages cause their recipients to
“dial home” and obtain the new translation from the leader.

Leadership. Our gossip protocol is also used to track
nodes in the system that are eligible to take on the leader
role, and also to detect leader failure [28]. The leader is de-
fined to be the eligible node with the lowest node identifier.
If by some fluke two leaders run concurrently in a non-
partitioned system, the situation will resolve itself: nodes
that see proposed mappings from both simply ignore the
IPMC mapping proposed by the one with the larger node
identifier. Moreover, two concurrent leaders running in the
same portion of the network would select nearly identical
mappings: our heuristic is stable and with similar data pro-
duces identical or nearly identical mappings. In the event
of a partitioning failure, our solution will result in multiple
leaders, one per partition. As soon as partitioning ends, one
of the two leaders will dominate the other.

Because we use an urgent broadcast channel when map-
pings change, backed up by gossip repair to disseminate



mappings, no node will be confused about who the leader is
for more than a few milliseconds. A leader election mech-
anism with stronger guarantees could be implemented if
needed, but the current scheme is simple and appears to be
adequate for our target setting.

Rate limits and churn control. In the large, well-
managed data centers of interest to us, node failures are not
common enough to represent a problematic source of over-
head, as we will see in section 6. The more likely sources
of membership changes are associated with startup or shut-
down of services that span groups of nodes and use IPMC.
For example, suppose a data center hosts services on be-
half of many corporate customers and handles flash loads
by launching extra copies. A “service” might well run on
many nodes, using IPMC internally. Back-end applications
send updates to these cloned front-end services, again us-
ing IPMC. Thus dynamic expansion or reduction in the
number of cloned copies of such a service is likely to be
an important source of dynamicism. We evaluate such a
scenario in the experimental part of this paper.

MCMD limits the rate of membership change events
at any single node as a defense against buggy applications
that frantically join and leave groups at high speed. Under
normal (non-buggy) conditions, joins and leaves involve a
single unicast exchange with the leader, imposing load on
it that increases linearly with the rate of such events in the
data center as a whole. As mentioned above, the node that
joined or departed from the group then sends a multicast
to update the membership lists of other group members.
Thus MCMD handles services composed of nodes that
tend to join groups and then remain in them, but may
face performance issues with applications that create IPMC
groups very dynamically.

The purpose of the rate limits is to keep multicast com-
munication within a customizable “safe zone”, preventing
buffers on network cards from filling up and potentially spi-
raling into a multicast storm. Alternatively, the rate check-
ing mechanism could notify data center operators if multi-
cast traffic rates exceed specified thresholds.

Robustness.When a node notices that the time-stamp
value for some other node in its map is older thanTfail

seconds, it flags that node as “dead”, whereTfail is picked
using the analysis in [28]. The entry is not immediately
deleted, but maintained in dead state forTfail more seconds.
This prevents a dead node from being resurrected by some
node that has not yet sensed the failure. After2Tfail seconds
have elapsed, the entry is deleted. In [28] this scheme is
shown to be quite robust. Our experiments suggest thatTfail

should be in the order ofR log n, whereR is the gossip rate
andn the system size.

The system is able to tolerate leader failure because all
nodes replicate the agent state. Once agents realize that the
leader is no longer responsive, the leader is marked as dead
and the failure detector disseminates that information to all

the nodes. A leader election protocol is started to appoint
a new leader agent, selecting the operational node with the
largest uptime value.

Memory requirements. The size of the replicated
global view is not prohibitive, because only 24 bytes are
required per membership. For example, we can store the
agent state for a 1,000-node cluster with a membership
pattern based on the WVE trace from section 5.2 within
1MB of memory.

4. Optimization Problem
At the heart of MCMD is the optimization problem of mak-
ing the best use of scarce IPMC resources. The MCMD
leader can assign a limited number of IPMC addresses to
application-level groups in the system to reduce redundant
network traffic. We observe that application-level groups
with similar membership could be assigned the same IPMC
address at the cost of forcing some receivers to filter out
unwanted traffic. Traffic to those groups which are not as-
signed a network-level IPMC address is sent using an alter-
native multicast mechanism, currently point-to-point uni-
cast. We trade off the following objectives.

• Minimize the number of network-level IPMC addresses.
NICs, routers and switches scale poorly in the number
of IPMC addresses, as discussed earlier.
• Minimize redundant sender transmissions. When a

sender maps IPMC to unicast, that sender will send
identical packets to multiple destinations, incurring an
associated cost.
• Minimize receiver filtering. If a receiver must filter un-

wanted traffic it will incur significant costs [9]. If the
unwanted traffic load becomes too high, packet loss will
ensue: precisely the condition MCMD was created to
address.

The above goals spur a family of optimization questions,
some which have been previously addressed in the litera-
ture. Thechannelizationproblem [1, 27, 32] is the follow-
ing formulation:

Allocate a fixed number of IPMC addresses to col-
lections of groups to minimize both sender transmis-
sion costs and receiver filtering costs such that sub-
scribers receive all messages they are interested in
at least once.

The channelization problem isNP -complete [1], and sev-
eral heuristics to solve it have been proposed and experi-
mentally evaluated in the past [1, 27].

In this section, we extend the channelization problem to
take into account alternative multicast mechanisms, specif-
ically point-to-point unicast, as well as the administrative
policy. We present a greedy algorithm to tackle the gener-
alized translation problem, which remainsNP -complete.
Finally, we show the feasibility of the algorithm by evalu-



ating it on a wide range of inputs from real-world data sets
and synthetic models.

4.1 Model

Let U denote the set ofn users(or nodes) in a system, and
G denote the set ofk application-levelgroups. DefineUg ⊆
U for g ∈ G as the set of users who subscribe to groupg,
andGu ⊆ G for u ∈ U as set of groups to which useru
subscribes, that isGu = {g ∈ G : u ∈ Ug}. In the example
in figure 4,Ug5

= {u4, u6} andGu1
= {g1, g2, g3}.

Recall from section 3.1 that the administrator policy
permitsm network-level IPMC groups to be used in the
data center and that the limit of network-level IPMC groups
for nodeu ∈ U is mu. The goal is to find a setP of
m pairwise disjointmeta-groupsP = {P1, P2, . . . , Pm},
wherePi ⊆ G for eachi. The idea is that meta-groups
should contain “similar” groups in terms of membership.
For example, the partitionP = {P1, P2, P3} in figure 4
covers all five groups. The meta-groupP1 = {g1, g2, g3}
merges together three application-level that have similar
sets of receivers. We can then assign each meta-groupPi in
P to a network-level IPMC addresses that is shared by all
the groups inPi and use point-to-point unicast for groups
that are not contained in any meta-group.

Let Π =
⋃m

i=1
Pi be the set of groups covered by meta-

groups. In the example,Π = {g1, . . . , g5}. Let Ru = {Pi :
u ∈ Ug for someg ∈ Pi} denote the set of meta-groups
that cover every application-level group useru has joined,
andΠu =

⋃
Pi∈Ru

Pi be the set of groups that belong to the
same meta-groups asu. To illustrate,Ru4

= {P1, P2, P3}
andΠu4

= {g1, . . . , g5} in figure 4, whereasRu2
= {P1}

andΠu2
= {g1, g2, g3} even thoughu3 does not belong to

g3.
Consider an arbitrary groupg ∈ G. Assigning network-

level IPMC addresses to meta-groups effects senders and
receivers as follows:

• Senders:If g is contained in some meta-groupPi, then
a single message is sent to the IPMC address associated
with Pi. Otherwise, the message is sent individually to
each receiver inUg.
• Receivers:If g belongs to some meta-groupPi, then a

receiver may need to filter out messages to other groups
in Pi that it did not join. Otherwise, no filtering is
necessary.

Let us define these overheads formally asduplicationand
filtering costs. Recall thatλg denotes the average rate of
traffic received in groupg per time unit.

Definition: Let β ≥ 0. Define the totalcostof translation
P on a set of groupsG as

cost(P,G) = costF (P,G) + βcostD(P,G),
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Figure 4. Notation. The users on top receive data from the
application-level groups on the bottom. The rectangles correspond
to the meta-groups in partitionP .

where thefiltering costcostF (P,G) is

costF (P,G) =
∑

u∈U

∑

g∈Πu−Gu

λg

and theduplication costcostD(P,G) is

costD(P,G) =
∑

g∈G−Π

λg (|Ug| − 1) .

Example.Looking at figure 4 again, costF (P,G) = λg1
+

λg2
+ λg3

since useru4 must filter traffic from groupsg1

and g2, andu2 must filter traffic from groupg3. For the
duplication cost, not that it counts only redundant copies
of messages beyond the first one sent. All groups in the
example are covered by the partitionP so the duplication
cost in the example is zero. If the partition was insteadP ′ =
{P1}, then the duplication cost would be costD(P ′, G) =
λg4

+ λg5
since messages sent to the uncovered groupsg4

andg5 each need to be sent to two receivers.
Optimization problem. The generalized channelization

problem for the translation mechanism is the following:

Given a set of groupsG, find the setP of m meta-
groups such that|Ru| ≤ mu for all u ∈ U with the
lowest cost(P,G).

By minimizing only filtering costs (β = 0) and making
the node-limitsmu infinite, we obtain the original chan-
nelization problem from Adleret al. [1] as a special case.
Finding an optimum solution to our optimization question
is thus anNP -complete problem. In the next subsection,
we present an algorithm to find an approximate solution.

For simplicity, we will assume throughout thatβ = 1. In
other words, we assume that the cost of producing redun-
dant packets for the sender and the networking hardware
roughly equals the CPU cost for filtering out an unwanted
packet.

4.2 Translation Algorithm

We give a simple heuristic method that constructs meta-
groups by traversing large groups with high traffic, then



repeatedly moving groups to these meta-groups in a greedy
fashion if doing so decreases the total cost.

Algorithm 1 TRANSLATION(G), whereG is the set of groups.

m′ ← 0
for all g ∈ G in decreasing order byλg|Ug| do

i← arg max
i=1,...,m′

(C(i, ∅)− C(i, {g}))

if (i = 0 or C(i, ∅)− C(i, {g}) < 0) andm′ < m then
m′ ← m′ + 1 {Create a new meta-group}
Pm′ ← {g}

else
Pi ← Pi ∪ {g}

end if
G← G− {g}

end for

We assume thatarg max over the empty set returns 0.
The functionC(i,H) computes the solution cost after the
groups inH have been migrated to meta-groupPi. More
specifically,C(i,H) = cost(P̂ , G − H), whereP̂ equals
P exceptPi is replaced byPi ∪ H.

For clarity, the algorithm does not address the node-
specific limitsmu on the number of multicast a receiver
can join. This is amended by a provision to the loop to only
consider those groupsg whose members are all below the
mu limit.

We also adapted other algorithms from the literature,
such as a variant ofk-means, but found that the greedy
heuristic consistently outperformed those approaches. We
are currently exploring how well the algorithm approxi-
mates the optimal one in worst-case scenarios.

Incremental version. Because the mapping module
will periodically update the translations, a desirable prop-
erty is that if group memberships do not change much,
neither should the translation computed by the algorithm.
Once the translation algorithm is rerun, we initialize the
meta-groups with the output of the previous run. If a new
group g has been created with valueλg|Ug| higher than
the value

∑
g′∈Pi

λg′ |Ug′ | for some meta-groupPi, or if
there are fewer thanm meta-groups in the system, thenPi

is broken up andg gets a meta-group of its own. Toggling
the transport mechanism from using network-level IPMC
groups to point-to-point unicast in this case only affects
groupg and the groups inPi. The for-loop is then executed
as before.

It follows that the translation algorithm can be run incre-
mentally for each new event (e.g., a membership change)
without imposing high load on the leader agent.

Running time. The running time of the translation algo-
rithm is O(kmQ), wherek is the number of groups,m is
the number of meta-groups, andQ is the size of the largest
group. Because them andQ factors both depend on phys-
ical hardware, they can be assumed to be constant with re-
spect to the number of groups; hence the algorithm scales
linearly in the number of groups. The running time of the

algorithm to compute each data point in Figure 5 (described
later) was 1.13 seconds on average using a Python imple-
mentation. Note that running the translation algorithm from
scratch represents a worst-case use, more typically the al-
gorithm only needs to incrementally adjust a previously
computed solution.

Decentralization. In ongoing work, we are exploiting
properties of the cost function to create a decentralized
translation algorithm to accommodate very large networks.
Nodes would maintain information only about membership
of nodes in groups they subscribe to, together with statis-
tics about sizes and traffic rates of application-level groups.
Each node would run a portion of the computation based on
a portion of the overall group overlap graph, and probabilis-
tically report observed group traffic rates to a global group
via gossip.

5. Evaluation of the Translation Algorithm
Before we can discuss how to evaluate a group optimiza-
tion method, such as the translation algorithm, we must first
ask what kinds of groups and group structure should be ex-
pected within data centers. Here the termgroup structure
refers to properties of individual groups as well as overlap-
ping membership between multiple groups.

The answer to the question is non-trivial, because the
definition of a “group” is fuzzy and depends on context.
Some groups abstract social human interactions, such as
chat rooms, newsgroups and blogs. Others arise in the
course of design of real systems, for instance the groups
used to replicate data within components of a distributed
system to allow load to be spread over multiple computing
nodes [29], or the groups that serve as communication
channels for multiple inventory systems while they process
a web-query from a customer.

We obtained data sets and models for both abstractions
(social groups and systems groups) in the form of bipartite
graphs between a set of users and groups. We will first
describe the social data sets, then discuss an interesting
systems data set and last evaluate the translation algorithm
on those inputs graphs.

5.1 Social Data Sets

We obtained a number of data sets for socially influenced
group structure, including one generated by a model. Each
data set consists of edges between groups and the users
belonging to those groups.

• L IVEJOURNAL: LiveJournal communities and users
who belong to them [4].
• AMAZON: Products reviewed by customers at Ama-

zon.com [21]. Each product corresponds to the group
of customers who reviewed the product.
• YAHOO-GROUPS: The users and topics of Yahoo!

Groups, an on-line community driven forum [33].
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• WIKIPEDIA : Wikipedia articles ever edited by regis-
tered authors [11]. Each article represents a group of
those who are interested in it.
• MIM-M ODEL: A bipartite generalization of the prefer-

ential attachment model to produce power-law degree
distributions for users and groups [29].

These data sets may not directly correspond to a real-
istic use of multicast; for instance, it is unlikely a mul-
ticast group is assigned to every LiveJournal community
or Wikipedia article. Instead, they illuminate the similar-
ity between human interests, which can indirectly bene-
fit socially influenced data-center applications, such as a
publish-subscribe layer for trading in the stock exchange
[27] or updates sent to newsfeed followers in real-time on
Facebook or Twitter.

5.2 Systems Data Set

We also obtained a trace of multicast patterns from a real-
world system. IBM WebSphere Virtual Enterprise (WVE)
is a widely deployed commercial distributed system for
running and managing web applications [16]. Each WVE
cell consists of some (possibly large) number of servers, on
top of which application clusters are deployed. Larger data
center deployments clone these cells, partitioning clients
among them to balance load. Internal management of each
cell, such as workload balancing, dynamic configuration,
inter-cluster messaging and performance measurements,
uses a built-in bulletin board component. The bulletin board
(BB) exports an interface resembling publish/subscribe
which is implemented as an overlay [8]. Note that when
more than one cell is active, each cell uses its own private
BB service.

IBM created the trace by deploying 127 WVE nodes
constituting 30 application clusters for a period of 52 min-
utes, and recording the messages sent to each group along
with the sender and receivers. An average node posted to
280 groups and received from 474 groups. There were

1,364 application-level groups with both senders and re-
ceivers that were used to disseminate messages during the
trace.

The group patterns in the trace are highly structured.
There are four prevalent communication patterns for pub-
lishers and subscribers: few-to-few, few-to-many, many-to-
few, and many-to-many. Here,few means no more than
10 nodes, andmanyimplies all 127 nodes except at most
10. Interestingly, every group in the trace fits one of the
four categories. Some communication patterns directly re-
sult from the design of particular WVE components — a
subset of the many-to-few groups, for instance, were used
for gathering statistical reports. Other behavior is harder
to characterize, supporting our case for automatically com-
pressing subscription patterns instead of changing existing
code to manually optimize group membership.

5.3 Translation Algorithm on Data Sets

We evaluated the translation algorithm on each of the data
sets, using a sample of 1,000 groups from each, assign-
ing a network-level IPMC address to each meta-group pro-
duced by the algorithm. Figure 5 shows how the total cost
decreases as the number of available IPMC addresses in-
creases. Note that if 1,000 IPMC addresses are available,
each group in the data set can use IPMC as transport and
the cost due to filtering and duplicates becomes zero.

The cost decrease is close to exponential, as seen in Fig-
ure 5, implying that major cost savings arise even when a
modest number of IPMC addresses are enabled in the net-
work. For every data set and model we tried, the translation
algorithm endowed with only 100 IPMC addresses — 10%
of the total number of groups — saves more than 50% of
the cost that is incurred when IPMC is disabled. Using 4
IPMC addresses in the WVE data set, the cost of filtering
and duplicates using our algorithm is almost negligible, and
with 10 IPMC addresses it goes down to zero as the embed-
ded plot in Figure 5 shows. In other words, the translation
algorithm was able to assign a meta-group to every distinct
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group pattern encountered in the data set. We conclude that
our algorithm makes effective use of a scarce number of
IPMC addresses.

Traffic rates. In the experiment above, we assumed a
uniform rate of traffic on all the groups even though this
assumption may be unreasonable. For instance, 80% of the
traffic in the WVE trace was carried in just 18% of the
groups. By adopting a more realistic model of traffic rates,
specifically by lettingλg follow a power-law distribution
uncorrelated with the group size, we observed even more
dramatic cost savings than with uniform traffic rates for ev-
ery single data set. The need for brevity makes it impossible
to include the associated figures in this paper.

5.4 Simulation

Thus far, we have demonstrated that our greedy translation
algorithm is able to make efficient use of a limited num-
ber of network-level IPMC groups without incurring high
costs of filtering or duplication. We now vary the number
of application-level groups while keeping the number of
network-level IPMC addresses constant to understand how
our translation algorithm works at scale.

In the previous subsection, we treated the WVE trace
as a form of ground truth giving fine-grained information
about group membership and communication patterns in a
real, widely used platform. Here we use the trace as a tool
for generating substantially larger data center scenariosby
cloning parallel instances of the membership patterns. We
simulatek side-by-side cells of WVE running on distinct
sets of 127 nodes each, while running a single instance of
MCMD that spans the entire data center.

We compare the number of send operations for a sender
who transmits one packet per group in the cloned WVE
trace scenario for three different transports:

• MCMD: 0 IPMC. Unicast transmissions to each re-
ceiver.
• MCMD: 1000 IPMC. Using the MCMD translation

algorithm with1, 000 network-level IPMC addresses.
• Per-group IPMC. Each group has a network-level

IPMC address.

We assume a traffic rate of one message per group, per time
unit. In the multicast case, this results in a single network
message. When a group is mapped to unicast, the number
of network messages will be determined by the number of
group members.

The simulation shows that the cost for the sender us-
ing MCMD with the translation algorithm is between the
two extremes. In Figure 6(a), we see that until250 WVE
cells — a scenario constituting 31,750 nodes and 341,000
groups — MCMD uses the optimal number of sends with
zero duplicates. The filtering costs in Figure 6(b) are also
modest during that period. This confirms our earlier ob-
servation that 4 IPMC addresses suffice with negligible
cost for a single WVE instance. With more than250 con-
currently active WVE instances, trade-offs between dupli-
cation and filtering costs arise. Up to 500 instances, the
algorithm saves duplication cost by merging less similar
groups, increasing filtering costs. As we add even more
WVE cells, MCMD prioritizes large groups for map-
ping to IPMC and still saves cost compared to individual
unicast even though it has fewer than 4 IPMC addresses
available per WVE instance. Beyond 1,000 concurrent
WVE instances — 127,000 nodes and 1,364,000 groups
— MCMD has fully exhausted the 1,000 network-level
IPMC groups it was provided and must resort to using in-
dividual unicast to further groups.

Although we lack WVE traces for cells containing
larger numbers of nodes, we believe that MCMD would do
just as well when confronted with scaled scenarios in this
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Figure 7. Robustness.Average traffic received per MCMD
agent in a 91-node deployment over time. At time 600, half of
the nodes are killed and come back to life at time 800. Error bars
represent sample standard deviation over 24 trials.

dimension. We say this because MCMD exploits correla-
tion in group interests; to defeat the translation algorithm
a system would need to exhibit highly uncorrelated group
membership patterns. In real-world uses of multicast, we
believe such unstructured membership to be more of an ex-
ception, and that correlated structure like in the IBM WVE
system is closer to the rule. Group membership correlations
are discussed further in [29].

6. Evaluation of Prototype
Thus far, we have shown that the algorithm used by
MCMD can effectively map application-level groups to
a small set of IPMC addresses. We now evaluate a proto-
type implementation of MCMD to answer the following
questions:

• Robustness.How do node failures affect MCMD?
• Overhead.How much overhead does the system impose

on applications and on the network?
• Scalability.Does MCMD scale in the number of IPMC

groups without experiencing disruption?

Our results suggest that MCMD provides group scalabil-
ity to IP Multicast applications with negligible overhead,
while remaining robust to failures.

Experimental set-up. We have implemented MCMD
in C/C++ and deployed it on 91 nodes in the DETERlab
testbed and 17 nodes in the CUNET Emulab test bed. The
nodes in DETERlab are equipped with Intel Xeon 64-bit
3.0GHz processors, 2GB of RAM and Intel Pro1000 1Gbps
NICs. They connect to a Cisco Catalyst 6500 series high-
end switch. The CUNET Emulab nodes are connected by
1Gbps Broadcom Tigon3 NICs to a single Nortel Baystack
BS5510-48T IGMP-aware switch.

Every node runs a single MCMD agent and one of the
following two simple IPMC applications:
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in a 90-node deployment where 10 MCMD agent nodes enter the
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group membership is selected randomly from the WVE trace. The
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• A senderapplication continuously transmits packets at
a fixed rate tok IPMC groups in a round-robin fashion.
• A receiverapplication joins the samek IPMC groups,

and retrieves incoming packets in a loop.

Agents gossip once per second.

6.1 Robustness and Network Overhead

MCMD must be robust if it is to be deployed in data
centers; with this in mind, we chose to implement a gossip-
layer and to replicate agent state on all nodes. A secondary
benefit for using gossip is to maintain a balanced load on
the network.

We subjected the 91-node MCMD deployment to a
major correlated failure: half of the nodes in the data center
died simultaneously at time 600 in Figure 7. Nevertheless,
the MCMD system continued running. The dead nodes
were resurrected at time 800 without any problems.

To evaluate network overhead, we measured the rate of
gossip and urgent broadcasts in MCMD on 90 nodes in
the DETERlab test bed. We gradually introduce nodes into
the system with 10 nodes entering every 20 seconds. Every
node runs an MCMD agent and a receiver application
that picks a random node from the WVE trace and joins
application-level groups accordingly. The random roles are
fixed over 20 measurement trials. The total traffic overhead
from running MCMD in this setting is shown in Figure 8.
When 90 nodes are in the system the total traffic imposed
is less than 500KB/sec, or 5.6 KB/sec on average per-node.
The increase in network overhead is roughly linear in the
number of nodes.

One can extrapolate the overhead from Figures 7 and
8 to predict larger scale behavior. The per-node overheads
of MCMD seen in Figure 7 are quite low and the current
implementation could scale to large configurations without
obvious problems. The network-wide load imposed by the
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system, however, might be prohibitive: with 100,000 nodes,
the network would bear approximately 1GB of overhead
per second.

As discussed in Section 4.2 (decentralization), a large
scale system could subdivide execution of the optimization
heuristic, rather than having a single leader run it for the
whole system. For example, a scaled-up WVE system with
k cells might result ink connected components, plus per-
haps an additional component consisting of management
groups that span most or all nodes. We then divide the bud-
get of IPMC addresses up, allowing each component to run
its own version of MCMD.

6.2 Application Overhead

We next measure the overhead of using the MCMD library
layer on a simple IPMC application. The application is a
copy of the sender application but with rate-limiting dis-
abled so that it sends IPMC packets tok groups as rapidly
as possible. We measure the maximum sending rate possi-
ble with and without MCMD. We also varyk to see the
effect of the data structures used by MCMD.

First, assume MCMD maps each application-level group
to a single network-level IPMC address. We saw an aver-
age increase of 10% CPU utilization for the application,
irrespective of the number of groups. We observe that the
number of operations per second falls by 10-15% in the
application by running MCMD, as the tall bars in Figure 9
show. Collisions in hash-maps account for the slight drop
in performance ask increases.

Next, consider the case where each group resolves to
both an IPMC address and a list of unicast addresses.
The shorter bars in Figure 9 show the effect when each
sendto() operation resolves to one IPMC address along
with either 4 or 9 unicast addresses, resulting in a total of
5 and 10 send operations, respectively. The performance
of point-to-point unicast met our expectations, realizinga
little less than1/r of the maximum number of operations
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per second when each application-level group is mapped to
r physical addresses.

6.3 Scalability in the Number of IPMC Groups

The primary goal of MCMD is to prevent disruption when
the number of multicast groups scales up. We conducted an
experiment on the CUNET Emulab test bed akin to the one
in section 2.4 to evaluate the amount of packet loss incurred
by MCMD with a large number of groups. Nine senders in
the Emulab test bed transmit 8 KB packets in a round-robin
fashion to2k IPMC groups. A receiver joinsk of these
groups and measures the number of packets received. The
message rate per sender is 10,000 messages/sec, divided
equally between the groups the receiver joined and the
remaining ones.

In this set-up, the MCMD translation algorithm would
simply merge the2k groups to a single meta-group and use
unicast as transport. To produce a more non-trivial group
structure for MCMD, the senders also join a random subset
of thek groups the receiver joined in a way that creates a
mix of small and large groups. The limit of network-level
IPMC groups used by the translation algorithm is set to
1, 000, including the per-node limit.

Our experiment revealed that the capacity for the hard-
ware to handle IPMC groups appears to be aroundk =
1, 000 when 2,000 groups are in the system, as seen in
Figure 10. The receiver application incurred at most 5.2%
packet loss by MCMD, well within the bounds of what
IPMC reliability layers can handle [5]. Without MCMD,
the application consistently experienced over 55% packet
loss when over4, 500 multicast groups were in the system.

7. Related Work
Jokelaet al.recently proposed LIPSIN [18], a protocol that
achieves multicast scalability by encoding forwarding state
in packet headers with Bloom filters, minimizing forward-
ing state at intermediate routers and switches. In contrast,



MCMD is a “dirty-slate” approach to the same problem,
requiring no modification to routers and switches. Earlier,
Wong and Katz [32] explored the problem of multicast state
minimization in inter-domain settings.

Akella et al.have pointed out the prevalence of packet-
level redundancy in network traffic [2, 3]. Measurements
show that in a trace of a data center link, 45% of packet
contents were redundant [3]. We believe that a significant
fraction of this observed redundancy results from point-to-
point unicast transmissions used by applications to carry
out multicast operations. While the de-duplication tech-
niques used by Akellaet al. eliminate this redundancy in
the network, they still require end-hosts to perform multi-
ple send operations where single IPMC sends might have
sufficed. In addition, the proposed techniques require addi-
tional processing and storage on routers.

In an earlier version of our work [30], the optimiza-
tion goal was theNP -complete problem of finding mul-
ticast groups withzerofiltering costs while also minimiz-
ing the number of multicast groups and duplicate packets.
Although solutions with zero filtering costs are desirable,
later work shows that group overlaps needed for zero filter-
ing solutions to save costs rarely arise [29].

8. Conclusion
IP Multicast can be a powerful communication option in
data centers; however, scaling barriers imposed by hard-
ware limits in routers, switches and end-host NICs have
prevented its usage. MCMD multiplexes limited numbers
of network-level IPMC addresses across large numbers of
application-level multicast groups. The effect is to enable
safe and scalable use of multicast. MCMD is completely
transparent to applications, which continue to use standard
IP Multicast interfaces, and does not require any modifica-
tion to the network. Our evaluation shows that MCMD is
scalable and robust to node failures.
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