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Abstract

Multicast traffic patterns play a key role in dependable
data centers, arising when data is replicated and distributed
over multiple machines for fault-tolerance and availability.
Such settings involve large numbers of multicast groups as
well as multiple senders to each group — a single system
can have hundreds of such multicast channels. Without ef-
fective multi-channel rate control, multicast senders cannot
determine the right rate to send data at and often transmit
to groups as fast as possible. As a result, multicast chan-
nels are subject to traffic spikes that can overload individual
end-hosts within the data center as well as its communica-
tion back-plane. This paper introduces and evaluates Ajil,
a distributed rate-limiting protocol for data centers. Ajil
enforces a system-wide quota on multicast traffic, and fa-
cilitates equitable distribution of this quota across all the
multicast channels in the data center.

1. Introduction

Multicast is key to building dependable data center sys-
tems, enabling the replication of data and functionality over
multiple machines for fault-tolerance and availability. In
such settings, multicast usage is characterized by large num-
bers of groups in the system, as well as many different
senders transmitting data to each group — in essence, hun-
dreds of channels between individual senders and groups of
receivers.

Unfortunately, multicast rate control in clustered settings
is a black art. Senders in a multi-channel setting have no
way to determine the right rate to transmit at, and often de-
fault to sending data as fast as possible. As a result, sys-
tems that use multicast heavily are extremely vulnerable to
‘black-outs’ resulting from disruptive traffic spikes. Multi-
cast channels can interfere with each other as well as other
unicast traffic, overloading both end-hosts and the data cen-
ter switching fabric.

This paper presents AJIL, a distributed rate-limiting pro-

tocol for data centers. AJIL has three goals: First, it estab-
lishes a soft global bandwidth limit on the aggregate mul-
ticast traffic in the network. Second, it enables equitable
division of this bandwidth limit across multiple groups and
senders in the system. Finally, it allows the network ad-
ministrator to issue an acceptable-use-policy (AUP) speci-
fying the bandwidth limit and what should happen if that
limit is exceeded. AJIL achieves these goals through a de-
centralized protocol in which senders use local information
representing a partial state of the system to make global de-
cisions on whether they should ramp up or slow down their
sending rates. These local estimate are obtained through
a broadcast control channel on which receivers periodically
and probabilistically transmit information about traffic rates
in different groups.

We evaluate a simulation of AJIL and demonstrate that it
can be used to effectively enforce a soft bandwidth limit in
a multi-group setting, and equitably divide this limit across
multiple groups as well as the multiple senders in each
group. The rest of the paper is organized as follows: we
outline the problem statement in Section 2, we describe the
operation of the AJIL protocol in Section 3, describe the
policies it supports in Section 4 and evaluate a simulation in
Section 5. After a discussion of related work in Section 6
and future work in Section 7, we conclude in Section 8.

2. Problem Statement

Services in data centers are often provided by collections
of nodes running a single application or a suite of applica-
tions. To avoid communication black-outs, a network ad-
ministrator can impose an aggregate multicast limit L in her
data center. Assume that {n1...nN} is the set of processes
(nodes) in the system, and {G1...GM} be the set of multi-
cast groups in use. Let rj(t) denote the multicast traffic rate
of group Gj at time t.

Our goal is to maintain that:

∀t :
M∑

j=1

rj(t) ≤ L



2.1 A Trivial Approach

We can trivially achieve our goal by dividing the allowed
multicast bandwidth equally across all the groups and all the
senders in each group; that is by hand-wiring that

∀t, ∀j : rj(t) =
L

M

However, this quota allotment is hard to achieve in sys-
tems where the number of groups and members of each
group are only known at run-time. Additionally, equal divi-
sion of the quota might not be optimal because of unequal
multicast demands of different nodes and groups. For this
reason, we need a protocol to dynamically assign bandwidth
quotas to multicast channels based on demand.

2.2 Why not TCP?

TCP is the de facto standard for flow and congestion con-
trol in practically any kind of network. It uses a simple, de-
centralized mechanism to ensure that bottleneck bandwidth
in a network is equitably distributed across all the unicast
flows traversing it.

Clearly, data center operators concerned about flow con-
trol could use TCP as the basis of a multicast protocol in the
manner of enterprise service bus solutions such as the Java
Messaging Service (a popular client-server style of mes-
saging system). However, in such approaches all messages
must pass through the server, which becomes a bottleneck
and single point of failure.

Once we accept that direct host-to-host multicast might
be preferable, one can still ask whether a direct mapping of
the TCP flow control and congestion protocol could solve
our multicast problem. Comparing our requirements to
TCP sheds light on the nature of a possible solution:

• TCP is a window-based protocol — each sender main-
tains a window of packets sent but not yet acknowl-
edged by the receiver, and only sends more packets
when current packets in the window are acknowledged
and removed from it. Such a scheme does not work
very well for multicast, since it requires each receiver
to send back acknowledgments to the sender, an ap-
proach that does not scale well with the number of re-
ceivers in a group. Instead, we need a protocol that
assigns a sending rate to each node for every group it
is transmitting to, and varies this rate over time to con-
trol the amount of traffic in the system.

• TCP is designed to prevent congestion collapse in net-
works, and uses packet loss as a signal of congestion.
We would like to enforce an administratively defined
limit on multicast bandwidth usage, and packet loss

does not necessarily occur when this limit is breached;
as a result, it is not a valid signal for limit violation.

• Packet loss is a 1-bit signal intrinsically tied to net-
work congestion. To impose an arbitrary bandwidth
limit within a data center, we need a more complex
signal that tells us when the limit is crossed as well as
the senders and groups primary responsible. One such
signal is an estimate of the aggregate traffic rate within
the system, along with a per-channel breakdown.

Accordingly, we need a solution that assigns sending
rates to each multicast channel in the system (i.e, to each
sender, for every group it is sending to), and determines this
rate locally at each sender by observing a system-wide es-
timate of traffic. Our assumptions of the operating environ-
ment for this solution are as follows:

• Nodes are expected to follow the protocol and not
behave maliciously. We do assume benign fail-stop
faults.

• The clocks of individual nodes in the system are syn-
chronized with each other. In practice, it is possible to
achieve sub-millisecond clock synchronization within
data centers.

• The data center network is expected to provide a
broadcast capability to nodes.

3. The Ajil Protocol

Constructing a strict rate-limiting protocol for multi-
party communication requires complete knowledge of all
the senders in the system and their sending rates. How-
ever this is difficult to achieve without using a centralized
server or running a consensus protocol. This is specially
the case for systems comprised of multiple non-overlapping
groups where nodes do not receive all the multicast mes-
sages pushed on the network.

We note that a minor relaxation of the requirements can
result in a simple decentralized solution to the rate-limiting
problem. Rather than enforcing a strict or ‘hard’ aggregate
limit at all times, we will allow occasional and temporary
violations, i.e. a ‘soft’ limit. Thus, our goal will be to mini-
mize the frequency of the global limit violations.

An optimal dynamic multi-party rate-limiting protocol
uses global information regarding the aggregate traffic rate,
and the rates on different channels, and makes decisions to
dynamically slow down certain nodes or adjust the band-
width quota allotted to certain groups. However, The re-
laxed requirement allows us to build AJIL in a decentralized
fashion such that nodes can use local information to esti-
mate the global traffic rates and make decisions on which



nodes should slow down, and how should the bandwidth
quotas be readjusted.

On a high level, a node running the AJIL protocol will
send multicast messages without restrictions and periodi-
cally reevaluate its sending bandwidth quota as to not ex-
ceed the global limit. When the limit is exceeded, nodes
will apply an administrator-specified slowdown policy to re-
duce their sending rate.

AJIL runs in equal-sized time windows, or epochs, and
has two parts:

• A monitor gathers statistics about multicast use on the
network.

• A reactor is activated at the end of each epoch if traffic
rates reach a critical threshold of the limit L. The reac-
tor reevaluates sending quotas and invokes slowdown
policies.

Nodes use local estimates obtained by the monitor to
evaluate whether the global limit has been exceeded. When
the limit is exceeded, a subset of the nodes and groups are
designated as a Reaction Domain and are required to slow
down their sending rates and cut their bandwidth quotas.

3.1 The Monitor

Monitors are used to collect local information that es-
timate the global status of the system. AJIL implements
the monitor component using a global dedicated broadcast
channel. At the end of each epoch, nodes probabilistically
broadcast the total amount of traffic that has been sent in the
groups they belong to in the previous epoch. This allows all
monitoring nodes to track the total multicast use in a decen-
tralized fashion without promiscuously listening for traffic
in other groups.

Upon receiving an update rj , the monitor will store it
until another update about Gj is received, or for a finite
timeout period after which the transmission rate on Gj is
assumed to be 0.

The broadcast probability determines the expected accu-
racy of the local information at each node. The network ad-
ministrator specifies the expected amount of broadcast traf-
fic to be used for the monitor as a fraction (c) of the total
amount of multicast used by the rest of the system. At the
end of each epoch t, a node ni ∈ Gj sends a broadcast

message with probability c · rj(t)
|Gj | .

Claim. The expected rate of reports published on the
broadcast channel is a c fraction of the total multicast traffic
in the system.

Proof. Assume the multicast traffic rate for group Gj is a
constant rj = rj(t) for all t. For a fixed a group Gj let

tij =
{

1 if node i in Gj sends a report packet
0 otherwise

Let tj =
∑n

i=1 tij denote the rate of packets sent to the
broadcast channel that deal with group Gj . The total rate of
packets sent to the broadcast channel is T =

∑m
j=1 tj . We

have

E[T ] =
m∑

j=1

n∑

i=1

E[tij ]

=
m∑

j=1

∑

i∈Gj

c
rj

|Gj |

= c

m∑

j=1

rj ,

by the linearity of expectation, which proves the claim.

3.1.1 Smoothed Rate Aggregation

To filter out the effects of spikey sending rates, monitors
can keep track of an exponential moving average (EMA) of
the communication rates of other nodes and groups. More
specifically, let 0 < γ ≤ 1 be the smoothing factor for the
exponential moving average function. Each node records

rj(t) = γ · oj(t) + (1− γ) · rj(t− 1)

where oj(t) is the observed communication rate of Gj

during epoch t. Notice that by setting γ = 1 we will have
rj(t) = oj(t).

3.2 The Reactor

Nodes activate their reactor component when aggregate
traffic rates reach a critical threshold of the limit L. Each
node uses its local estimates to independently compute
whether it is part of the reaction domain or not. Nodes in
the reaction domain will apply a slowdown policy adjusting
the bandwidth quotas for subsequent epochs.

Reaction Domains

A reaction domain is defined as the top β highest traffic
nodes in the top α highest traffic groups. For this we ex-
plicitly define 0 < α ≤ 1 to be the fraction of the highest
traffic groups to be included in the domain, and 0 < β ≤ 1
to be the fraction of the highest traffic nodes to be included
in the domain.

At the end of epoch t, node ni in group Gj uses the in-
formation supplied by the monitor to compute the reaction
domain. ni determines if Gj is in the reaction domain by
computing if:



Figure 1. An illustration of a reaction domain
configured with parameters α = 0.5, β = 0.5.
The reaction domain (shaded area) encom-
passes the top β senders in the top sending
α groups.

rank of Gj by traffic ≤ dαMe
(i.e. if Gj is one of the top α groups)

If so, ni checks if:

rank of ni by traffic in Gj ≤ dβ|Gj |e
(i.e. if nj is one of the top β senders in group Gj)

If so, ni is in the reaction domain and applies the slow-
down policy in subsequent epochs.

Figure 1 shows an illustration of a reaction domain com-
puted in an instance with five sending groups. The groups
are sorted decreasingly by traffic from left to right, and the
senders within each group are sorted decreasingly by traffic
in that group from top to bottom. The reaction domain then
is computed by taking the top β senders in the first α groups.
Notice that this construction means that the reaction domain
can change in different epochs. Additionally, the use of lo-
cal estimates implies that different nodes might have differ-
ent estimates for the reaction domain in this epoch.

4. Policy

The AJIL protocol allows the network administrator to
specify an acceptable-use-policy (AUP) to govern multicast
traffic in her network. The AUP is specified in terms of the
protocol’s parameters and a slowdown policy to be imple-
mented when the aggregate rate-limit is exceeded.

Monitor:
1: listen for incoming traffic broadcasts
2: for all Gj in joined groups do
3: rj ← locally-seen traffic rate
4: if rand() ≤ c · rj

|Gj | then
5: broadcast(rj)

Reactor:
1: sort groups by traffic
2: if Gj’s sorted index ≤ dα ·Me then
3: sort members of Gj by traffic
4: if my sorted index ≤ dβ · |Gj |e then
5: multiplier← 1
6: apply slowdown()

Slowdown:
1: if total traffic using multiplier/2 ≤ L then
2: multiplier← multiplier/2
3: quota← slowdown_policy * multiplier/2
4: if multiplier is sufficiently small then
5: stop slowing down

Pseudocode 1: High-level pseudocode of AJIL.

4.1 Protocol Parameters

The network administrator specifies values for the fol-
lowing parameters governing the protocol’s performance:

• The aggregate rate-limit L.

• An epoch size (window length). This will determine
how often is the monitor checked and how quickly
does the protocol react to aggregate limit violations.

• The monitor broadcast fraction c set to a value be-
tween 0 and 1. As discussed previously, this governs
the frequency of traffic reports sent by the monitor on
the broadcast channel. Traffic reports for group Gj

are sent at a rate proportional to c · rj . For example,
c = 0.01 implies that for every 100 packets sent on a
group, a single traffic report will be sent in expectation.

• Reaction domain parameters:

– α: the fraction of the top-sending groups that
will be included in the reaction domain. This pa-
rameter should be given a value between 0 and 1,
where 1 indicates all the groups and 0 is specially
reserved for the single highest sending group.

– β: the fraction of the top-sending nodes within
the top-sending groups to be included in the re-
action domain. This parameter should be set to
a value between 0 and 1 as well with the same
meaning as before.



4.2 Slowdown Policy

The network administrator also specifies a slowdown
policy governing how a violation of the aggregate limit is
handled. The slowdown policy is implemented by the nodes
that are in the current reaction domain. A slowdown policy
can be defined as any number of things for example:

• Flat Tax: each node slows its sending rate by some
constant KBps.

• Local Percentage: each nodes slows down by some
fixed percentage.

• Global Percentage: each node slows down propor-
tional to the global excess over the aggregate limit.

Our evaluation showed that ’fairness’ is best achieved
when nodes are slowed down proportionally to their trans-
mission rate following the global percentage scheme above.

The actual meaning of a ’slowdown’ is left for imple-
mentation and can be part of the policy itself. For example,
a slowdown can be implemented as any of the following:

• Drop packets — This policy suits applications that do
not require 100% reliability from the transport layer,
either running their own application-level reliability
protocols or sending data that is intrinsically tolerant
of some loss.

• Delay each outgoing packet — For applications that
require a reliable transport layer, AJIL can delay pack-
ets at send-side buffers instead of dropping them.

Changes made to the policy parameters by an adminis-
trator are propagated by broadcasting on the shared channel.

4.3 Slowdown Policy Application

AJIL’s rate control policies are a superset of TCP’s
AIMD curve; with the local and global percentage policies,
AJIL supports an MIMD (Multiplicative Increase Multi-
plicative Decrease) curve, whereas with the flat tax policy, it
supports an AIAD policy (Arithmetic Decrease Arithmetic
Increase).

For MIMD policies, a “slowdown multiplier” is initial-
ized to 1 when the slowdown is first initiated. In each
epoch while the slowdown policy is activated, the band-
width quota is cut at minimum by a ’multiplier factor’ of
the amount dictated by the policy. Opportunistically, nodes
check whether cutting the quota by half the multiplier factor
of the amount dictated by policy will not exceed the global
bandwidth limit according to the information gathered by
the node’s monitor. If the latter is the case, then that option
is followed, and the multiplier is set to half its value for the

subsequent epochs. Otherwise, the quota is cut down by the
first amount and the multiplier is kept at its current value.

For example, in the first epoch of a slowdown, the node
tests whether it should slowdown by the full amount dic-
tated by policy or half of it. If slowing down by half the
amount is possible, then the multiplier is set to 0.5 and later
epochs test whether they could minimize that deduction any
further. With this mechanism, nodes stop slowing down
when the multiplier reaches a sufficiently low value.

With this we have a complete description of AJIL. Pseu-
docode 1 provides a high level summary of our protocol.

5. Simulation and Experimental Results

In this section, we evaluate the AJIL protocol by simula-
tion. The simulator uses the previously described algorithm
and some simple acceptable use policies.

Our evaluation has multiple goals. We first test our pro-
tocol’s rate-limiting capabilities with a couple of multicast
traffic patterns. We then evaluate the effects of manipu-
lating the protocol’s parameters as part of the AUP. Addi-
tionally we test how the slowdown policy is being applied
across groups and individual communication channels. Fi-
nally we test two simple administrator-defined slowdown
policies and highlight their differing effects.

5.1 Setup

We based the setup of our nodes and multicast groups on
a previously-acquired multicast trace of an IBM Websphere
[1] deployment. That trace showed an internal publish-
subscribe component of Websphere using over 6,600 multi-
cast groups averaging 10 members per group.

Our simulator generates multiple communication pat-
terns to reflect different data center deployments. Dur-
ing initialization, nodes subscribe to the various multicast
groups uniformly and read-in a program file dictating the
number and size of messages to be sent during each epoch.
This file simulates the application load. From the perspec-
tive of our protocol, during each epoch the application sends
multicast requests down to the protocol which puts them
down on the network as long as its current quota has not
been exceeded. At the end of each epoch, nodes reevalu-
ate their sending quota for every multicast channel on each
group. We have assumed a model in which sending packets
up to the current quota and then dropping the rest is accept-
able.

5.2 Rate-Limiting

Figure 2 shows the aggregate multicast traffic of a net-
work with a soft rate-limit of 600 KBps. The figure depicts
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Figure 2. Multicast traffic rate-limited by AJIL under different communication patterns.

two communication patterns. Both networks start with traf-
fic rates of about 400KBps. The first graph on the left shows
a continuous gradual increase in raw IP Multicast traffic in
the unmanaged case. When AJIL is used to manage multi-
cast, the traffic increase is severely limited. The managed
multcast rate does not drop below the desired limit in the
first graph because AJIL is reactive in nature, and thus the
bandwidth is adjusted in every epoch reflecting the state as
it was in previous epochs.

The second graph on the right represents a more com-
mon case. The aggregate traffic in the network is steady at
around 400KBps when suddenly an event, or a faulty pro-
cess, triggers high multicast rates which push the aggregate
traffic over the set limit. As soon as that event terminates
the traffic rates go back to normal.

Both graphs in figure 2 show that AJIL does not affect
the multicast rates as long as they do not exceed the limit.
Once the limit is exceeded, AJIL minimizes the excess. No-
tice that the lower peeks above the limit line in both graphs
are those of rate-limited multicast. Even though the raw
traffic rates exceed the limit by over 20%, by using AJIL
this excess is sharply reduced.

In this experiment we set the protocol parameters to:
α = 0.5, β = 0.25, and a monitor broadcast factor c =
0.01. Notice that in both graphs the aggregate broadcast
traffic used by all the monitors is reported at the bottom and
is minimal in comparison to the aggregate multicast traffic
in use.

5.3 Reaction Domain Size

We tested various sizes for the reaction domain trying
to determine an optimal selection. We note that the effects
of the size of the reaction domain are largely dependent on
the slowdown policy specified by the administrator. For ex-
ample, using a reaction domain encompassing all the nodes
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Figure 3. The oscillation effect in different re-
action domain sizes.

and a slowdown policy that scales back the quotas for all the
senders by a fixed percentage has the effect of scaling down
the entire network when the global limit is violated. On the
other hand, if the administrator wishes to balance the multi-
cast bandwidth consumption between the nodes, she might
opt for choosing smaller reaction domains and implement-
ing a slowdown policy that scales back the top senders to
either a fixed upper-limit or by a fraction of their previous
sending quota.

However we observe that regardless of the slowdown
policy in use, a certain pattern emerges. Since nodes rely
on data of previous epochs to estimate the global traffic for
subsequent epochs, it is often the case that when a group of
nodes slow down in an epoch, the aggregate traffic in the
subsequent epoch falls below the global limit. This can be
either because of the slowdown mechanism being applied,
or because other senders that were not part of the reaction
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domain have reduced their rates due to a reduced demand by
the application. In that case, all the nodes that slowed down
in the previous epoch will decide to increase their quota in
the next epoch. This will result in exceeding the limit in the
next epoch. This pattern of overshooting and undershooting
can continue for multiple epochs. This results in an oscilla-
tory pattern of traffic surging above or dropping below the
limit.

This oscillation, however, dampens with time. This is
caused by several factors: first, when nodes increase their
quota after being slowed down, they do that in a multi-
plicative way, and the quota increase amounts to 50% of the
quota reduction implemented in the previous epoch. In ad-
dition to that, nodes that are currently applying a slowdown
policy do not decrease their quota after they have increased
it. This means that the multiplicative increases can not be
rolled back after they have been issued. So in each epoch,
the percentage by which a node in the reaction domain can
speed up and slow down is monotonically decreasing. Thus
this oscillatory behavior dampens with time.

However, the speed of this dampening depends on the
size of the reaction domain. In large reaction domains, the
oscillation is bigger in magnitude because there are more
nodes that can potentially slowdown or speed up after each
epoch. Figure 3 shows the oscillatory behavior of different
reaction domains. In this experiment we fixed the commu-
nication pattern, and the network setup while varying the
size of the reaction domain. We set the (α, β) parameters
to: (1,1) which is 100% of the nodes, and (1, 0.5), (0.5,
0.5), (0.5, 0.25) which roughly correspond to 50%, 25%
and 12.5% of all the nodes in a setting were the nodes are
equally distributed among all the groups. Figure 3 plots the
percentage of the difference between aggregate traffic rates
and the imposed limit. So a value of +5% denotes exceed-
ing the limit by 5%, and -5% denotes sending 5% below the
limit. As illustrated by figure 3, smaller reaction domains

experience smaller-magnitude oscillation as expected.

5.4 Monitor Staleness

As explained previously, nodes rely on the monitor com-
ponent of the protocol to gather data about the sending pat-
terns of other nodes and other groups in the system. Nodes
then use that collected information to make local decisions
on whether to invoke the reactor and apply the slowdown
policy or not. Monitors use a broadcast channel and proba-
bilistically publish the traffic rates of their nodes. In this ex-
periment we manipulated the monitor broadcast frequency
(c) to measure its effect on the responsiveness of the proto-
col. A low broadcast frequency implies a lower probability
for a particular monitor to publish its most recent informa-
tion, which also implies that nodes often have to rely on
old stale data when reevaluating the sending quota between
epochs. This staleness implies a slower reaction to a limit
violation, and a slower speedup after the violation has been
removed.

Figure 4 shows the affect of the broadcast frequency c
on the responsiveness of the protocol. We used the square
wave traffic pattern as shown in the right graph of figure 2
where the limit is being exceeded during the time interval
[350, 700]. We measured the responsiveness of the sys-
tem under two broadcast frequencies: c = 0.01 which has
been used for the rest of the experiments thus far, and a
smaller c = 0.001. The first graph on the left in figure 4
shows the percentage by which AJIL overshoots the limit
during the time the limit is being exceeded. As expected,
with a smaller broadcast frequency, nodes are less aware of
the changes in the sending patterns of other nodes, and thus
their bandwidth quotas have not been limited to avoid the
excess. This results in the protocol overshooting beyond
the limit by a larger fraction than that experienced by the
larger c value.
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Figure 5. The average ratio of the allotted quota to the requested quota of each group and channel.

The broadcast frequency also affects the responsiveness
of the protocol in recovering from a limit violation. The sec-
ond part on the right of figure 4 shows how quickly the pro-
tocol recovers from the limit violation. The graph shows the
total allotted quota as a percentage of the requested quota
after the limit violation has ended. In an optimal case, the
utility should be 100% immediately after time t = 700,
since that is when the spike ends as shown in figure 2. As
expected, we see that a higher broadcast frequency results
in a faster recovery from a limit violation, because nodes
are more aware of the reduced sending rates of other nodes
and thus expand their own quotas.

5.5 Fairness and Utility

We achieved rate-limiting by slowing down a subset of
the senders in the system. However, in the worst case sce-
nario this could result in a subset of the senders being com-
pletely denied multicast access while other nodes receive
the full bandwidth quota that they ask for. We define utility
as the percentage of the requested bandwidth that is ratified
by the sending quota of a node or group. We get a sense
of the ’fairness’ of the protocol by analyzing the variance
of the utilities on each multicast group: a high variance im-
plies an uneven distribution of utilities among the nodes.
We can also measure the utility of each channel (sender on
a group). Intuitively, the fairness of the protocol depends on
the administrator’s policy and the protocol parameters.

Figure 5 shows the utility per channel and per group for
the same network under two different policies. In both cases
the slowdown policy has been set to slowdown the nodes in
the reaction domain by a percentage that is proportional to
the fraction of traffic being sent in excess above the global
rate limit. However, in the first graph on the left the reac-
tion domain has been set to include all the nodes and all the
senders (i.e. the entire network scales back when the limit is

violated). Meanwhile, the second graph on the left uses the
12.5% reaction domain (α = 0.5, β = 0.25) that we have
seen before.

As expected, the variance of the group utility is much
lower with the reaction domain is larger because more
groups are being scaled back. In both cases the variance of
the channels utility is larger than the variance of the groups
utility. This is because the uniform distribution of nodes to
groups results in having the bandwidth demands for groups
be very comparable. However, each channel represents the
multicast demands of a single node on a single group. So
channels are much more varied by definition. This means
that when channels with low demands are slowed down
their nodes will increase and regain their quotas quickly
because they do not contribute much to the overall aggre-
gate traffic and will thus find the capacity to increase their
quotas. This means that low demand channels can achieve
100% utility much easier than large demand channels. This
heterogeneity between the channels demands results in a
more varied utility for them, which explains the higher vari-
ance we see in figure 5 for channels when compared to
groups.

5.6 Policy

In the experiments we ran so far, we have used a single
slowdown policy. The slowdown mechanism involved re-
ducing the quota of all the nodes in the reaction domain by
the same fraction as the excess in multicast traffic above the
aggregate limit. However, as eluded to before, the choice of
policy has direct impact on the performance of the protocol.

In this experiment we implemented another slowdown
policy with a strict and naive slowdown mechanism dictat-
ing that nodes in the reaction domain set their quotas to 0 in
the first epoch in which they are in the reaction domain, and
then multiplicatively increase their quota (by multiplica-
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Figure 6. The top left part shows a naive slowdown policy resulting in unstable traffic when the
multicast demand exceeds the global limit. The bottom left part shows a more stable slowdown
policy producing a more stable traffic pattern. The right side shows the effects of the two policies
on group and channel utilities.

tively decreasing the slowdown amount by 50% if possible).
As figure 6 shows, although this policy quickly reduces the
violating traffic, it does not result in fairly distributed group
and channel utilities.

The top left part of figure 6 shows the aggregate traf-
fic as a result of running the naive policy (#1) as compared
with running our old, fraction-based, policy (#2) in the bot-
tom left. Although the naive policy cuts excess traffic more
quickly than the old policy, it results in extreme fluctuation
of traffic rates near the limit. This happens because as soon
as the global traffic reaches the limit, a bunch of nodes stop
sending immediately causing a quick dip in the aggregate
traffic. Following that, the nodes start sending again and
the pattern repeats.

The right side of figure 6 shows the difference in chan-
nel and group utilities between the two policies. On the top
we see that the per-channel utilities are much more variant
under the naive policy. This follows intuition because chan-

nels are repeatedly being closed (quota set to 0) and then
reopened. A similar effect is seen for the group utilities at
the bottom right part of the figure.

6. Related Work

A large body of work examines multicast flow control
within single groups on the wide area network. A primary
challenge in WAN settings is the heterogeneous nature of
receiver network capacities [6]. One important approach
used specifically for video or audio multicast is layering
[7, 3, 10], where a single multicast channel is divided up
into multiple separate groups, each transmitting a stripe of
the data; receivers can join a subset of these groups to re-
ceive data at a specific resolution. AJIL differs from these
schemes in three important ways — it’s designed for data
centers and not a heterogeneous WAN, it is aimed at data
that cannot be sent at multiple resolutions, and it looks to



enforce a maximum data rate across multiple groups and
senders.

In clustered settings, flow control is commonly found as
a component in group communication systems — for exam-
ple, in the Isis [4], Horus [9] and Totem [8] systems. The
challenge for these protocols is usually to avoid overload-
ing individual receivers in the group. In contrast to these
approaches, AJIL seeks to limit aggregate multicast usage
across multiple groups within a data center.

In the absence of effective rate control mechanisms that
can prevent packet loss, data center applications often resort
to sending packets as fast as possible and using reliability
protocols to recover lost packets [2]. Variants of reliability
protocols such as SRM [5] are used in current data centers.

7 Future Work

Our immediate focus is on implementing AJIL and eval-
uating it on a real data center testbed. We are looking to
obtain additional real traces of data center multicast usage
— group sizes, numbers of senders, and traffic rates — in
order to better understand how AJIL behaves in different
data center deployments.

An important avenue of future research involves prior-
itizing certain channels over others; for example, in an e-
commerce setting, we would prefer slowing down a group
used by a background maintenance application instead of a
high-value group dedicated to credit card transactions. Ad-
ditionally, we would like to explore the possibility of having
AJIL enforce ‘hard’ limits on bandwidth usage that should
never be violated, as opposed to soft limits that can be vio-
lated momentarily.

AJIL was developed in the context of a system called
Dr.Multicast [11], aimed at making data center multicast
more manageable by providing access control and resource
allocation for groups. We aim to integrate the AJIL imple-
mentation into Dr.Multicast as a rate control solution for
enforcing system-wide bandwidth limits.

8. Conclusion

Multicast can play a crucial role in speeding up depend-
able applications; yet, it is largely underutilized in modern
data centers due to the absence of effective mechanisms for
limiting its impact on the network. AJIL is a simple, dis-
tributed rate limiting protocol that allows data center ad-
ministrators to place a global bandwidth limit on multicast
traffic. Furthermore, AJIL enables equitable distribution of
bandwidth quotas across the multiple groups within the data
center, as well as the different senders to each group. Im-
portantly, AJIL is completely decentralized, using local es-
timates of global state to provide a robust communication
primitive with no single point of failure.
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