CS483/584, Fall 2016
Lab Assignment 2: The Stolen Homework

Story

After your heroic effort to foil Dr. Evil in the last assignmiehe returned to his lair to plot revenge. Nothing
was heard from him until you carelessly clicked an email firdm a relative (who happens to be royalty
in Nigeria), promising you a $6 million inheritance. Unfantately for you, the relative was in fact Dr. Evil
and your computer has been infected with malware.

Now Dr. Evil has encrypted all your homework and is demandintyageous sums of money to decrypt it.
Your mission is to trick his encryption software into fregipour homework, without actually paying. To
make your life even harder, Dr. Evil has encrypted each stibjeh a different mechanism which you will
have to solve individually.

I ntroduction

This assignment will help you develop a detailed understandf 1A-32 calling conventions and stack
organization. It involves applying a serieshafffer overflow attacken an executable filbuf bonb in the

lab directory.

Note: In this lab, you will gain firsthand experience with one of thethods commonly used to exploit

security weaknesses in operating systems and networkrse®er purpose is to help you learn about the
runtime operation of programs and to understand the nafut@soform of security weakness so that you
can avoid it when you write system code. We do not condonedbeofithis or any other form of attack to

gain unauthorized access to any system resources. Thergraneal statutes governing such activities.

L ogistics

As usual, this is an individual project.

We generated the lab usirgrc’s - nB2 flag, so all code produced by the compiler follows 1A-32 rules
even if the host is an x86-64 system. This should be enougbrtgirice you that the compiler can use any
calling convention it wants, so long as it’'s consistent.

Hand Out Instructions
You can obtain your buffer bomb by running
wget http://triton. mathcs. enory. edu/ bufl ab- handout . t ar

from your home directory.

You will get at ar file calledbuf | ab- handout . t ar . Start by copyinguf | ab- handout . tar toa
(protected) directory in which you plan to do your work.

Then give the command ‘ar xvf buf | ab- handout . t ar”. This will create a directory calleduf | ab- handout
containing the following three executable files:

bufbomb: The buffer bomb program you will attack.
makecookie: Generates a “cookie” based on your userid.

hex2raw: A utility to help convert between string formats.

In the following instructions, we will assume that you hawpied the three programs to a protected local
directory, and that you are executing them in that localatingy.

Userids and Cookies

Phases of this lab will require a slightly different solutifsom each student. The correct solution will be
based on your userid.

A cookieis a string of eight hexadecimal digits that is (with highlpability) unique to your userid. You can
generate your cookie with threakecooki e program giving your userid as the argument. For example:

uni x> ./ makecooki e ymr
0x2b36df 70

In four of your five buffer attacks, your objective will be toake your cookie show up in places where it
ordinarily would not.

The BUFBOMB Program

The BUFBOMB program reads a string from standard input. It does so witfuhctionget buf defined
below:

1 /+ Buffer size for getbuf =/
2 #define KEY_BUFFER S| ZE 32
3

4 int gethbuf()

5 {

6 char buf [KEY_BUFFER _SI ZF] ;
7 Get s(buf);

8 return 1;

9}

The functionGet s is similar to the standard library functiaget s—it reads a string from standard input
(terminated by\ n’ or end-of-file) and stores it (along with a null terminatat)the specified destination.
In this code, you can see that the destination is an drudyhaving sufficient space for 32 characters.

Cet s (andget s) grabs a string off the input stream and stores it into itdidason address (in this case
buf). However,Get s() has no way of determining whethleuf is large enough to store the whole input.
It simply copies the entire input string, possibly overrimgnthe bounds of the storage allocated at the
destination.

If the string typed by the user et buf is no more than 31 characters long, it is clear tpat buf will
return 1, as shown by the following execution example:

uni x> ./ bufbonb -u ymr
Type string: | want ny honework back.
Dud: getbuf returned Ox1

Typically an error occurs if we type a longer string:

uni x> ./ bufbonb -u ymr
Type string: Can | please have ny honework back. | have a major deadline!
Quch!: You caused a segnentation fault!

As the error message indicates, overrunning the buffeciylyi causes the program state to be corrupted,
leading to a memory access error. Your task is to be morerletie the strings you feedurFBoMB so that
it does more interesting things. These are cadbggploit strings.

BuFBoOMB takes several different command line arguments:

- u userid Operate the bomb for the indicated userid. You should alyaygide this argument for several
reasons:

e Itis required to submit your successful attacks to the gigderver.

e BUFBOMB determines the cookie you will be using based on your usasdloes the program
MAKECOOKIE.

e Dr. Evil has built features inteUFBOMB so that some of the key stack addresses you will need
to use depend on your userid’s cookie.

- h: Print list of possible command line arguments.

- n: Operate in “Nirvana” mode, as is used in Level 4 below.

3

- s: Submit your solution exploit string to the grading server.

At this point, you should think about the x86 stack structut®t and figure out what entries of the stack you
will be targeting. You may also want to think abaexactlywhy the last example created a segmentation
fault, although this is less clear.

Your exploit strings will typically contain byte values tido not correspond to the ASCII values for printing
characters. The programeEXx2rRAwW can help you generate thessw strings. It takes as input hex-
formattedstring. In this format, each byte value is represented byh@odigits. For example, the string
“012345” could be entered in hex format a80 31 32 33 34 35.” (Recall that the ASCII code for
decimal digitx is 0x3x.)

The hex characters you passx2rRAw should be separated by whitespace (blanks or newlinesgohre
mend separating different parts of your exploit string wigwlines while you're working on itHEX2RAW
also supports C-style block comments, so you can mark offosescof your exploit string. For example:

bf 66 7b 32 78 /* nov $0x78327b66, Yedi =/

Be sure to leave space around both the starting and endintnentrstrings (/ *’, ‘*/ ") so they will be
properly ignored.

If you generate a hex-formatted exploit string in the &bepl oi t . t Xt , you can apply the raw string to
BUFBOMB in several different ways:

1. You can set up a series of pipes to pass the string thregg2rAw.
uni x> cat exploit.txt | ./hex2raw | ./bufbomb -u ymr
2. You can store the raw string in a file and use I/O redireditosupply it toBUFBOMB:

uni x> ./ hex2raw < exploit.txt > exploit-rawtxt
uni x> ./ bufbonb -u ynmr < exploit-rawtxt

This approach can also be used when runmiugsoms from within GDB:

uni x> gdb buf borb
(gdb) run -u ymr < exploit-rawtxt

Important points:

e Your exploit string must not contain byte val@&0A at any intermediate position, since this is the
ASCII code for newline § n’). When Get s encounters this byte, it will assume you intended to
terminate the string.

e HEX2RAW expects two-digit hex values separated by a whitespacef y&w iwant to create a byte
with a hex value of 0, you need to specify 00. To create the WadEADBEEF you should pass DE
AD BE EF toHEX2RAW.

When you have correctly solved one of the levels, say level O:

../ hex2raw < xor-ymr.txt | ../bufbonb -u ymr

Userid: ymr

Cooki e: 0x2b36df 70

Type string: Xor!: You have decrypted your Psychol ogy homewor k.
VALI D

NI CE JOB!

then you can submit your solution to the grading server usieg s option:

The

.I'hex2raw < xor-ymr.txt | ./bufbonb -u ymr -s

Userid: ymr

Cooki e: 0x2b36df 70

Type string: Xor!: You have decrypted your Psychol ogy homewor k.
VALI D

Sent exploit string to server to be vali dated.

NI CE JOB!

server will test your exploit string to make sure it rgallorks, and it will update the Buffer Lab

scoreboard page indicating that your userid (listed by yoakie for anonymity) has completed this level.

You can view the scoreboard by pointing your Web browser at

http://triton. mathcs. enory. edu/

Unlike the Bomb Lab, there is no penalty for making mistakethis lab. Feel free to fire away BUFBOMB
with any string you like. Of course, you shouldn’t brute #tbis lab either, since it would take longer than
you have to do the assignment.

Level O: Psychology (10 pts)

You've determined that in Dr Evil's encryption program then€tionget buf is called withinsuFsomMB
by a functiont est having the following C code:

1
2
3
4
5
6
7
8
9

10
11

void test()

{
int val;
/* Put canary on stack to detect possible corruption =/
volatile int local = uniqueval ();

val = getbuf();

[+ Check for corrupted stack =/
if (local !'= uniqueval ()) {
printf("Sabotaged!: the stack has been corrupted\n");

12 }

13 else if (val == cookie) {

14 printf("Enigma!: getbuf returned Ox%\n", val);
15 val i dat e(3);

16 } else {

17 printf("Dud: getbuf returned Ox%\n", val);

18 }

19 }

Whenget buf executes its return statement (line 5g#t buf), the program ordinarily resumes execu-
tion within functiont est (at line 7 of this function). You want to change this behavi@fithin the file
buf bonb, there is a functioxor having the following C code:

voi d xor ()

{
printf("Xor!: You have decrypted your Psychol ogy homework.\n");
val i dat e(0)
exit(0);

}

To recover your work you need to geUFBOMB to execute the code foror whenget buf executes its
return statement, rather than returning st . Note that your exploit string may also corrupt parts of the
stack not directly related to this stage, but this will noisa a problem, sinceor causes the program to
exit directly.

Some Advice:

¢ All the information you need to devise your exploit string fhis level can be determined by exam-
ining a disassembled version®fFBOMB. Useobj dunp - d to get this dissembled version.

e Be careful about byte ordering.

e You might want to useDB to step the program through the last few instructiongetf buf to make
sure it is doing the right thing.

e The placement obuf within the stack frame foget buf depends on which version afcc was
used to compiléuf bonb, so you will have to read some assembly to figure out its traation.

Level 1. Economics (10 pts)
Within the filebuf bonb there is also a functiodes having the following C code:

void des(int val)

{
if (val == cookie) {
printf("Des!: Your call to des(0x%) has decrypted"

6

" your Economi cs honmework.\n", val);

val i date(1);
} else

printf("M sdecryption!: You called des(0x%)\n", val);
exit(0);

Similar to Level 0, your task is to getuFBOMB to execute the code fakes rather than returning tbest .
In this case, however, you must make it appeadds as if you have passed your cookie as its argument.
How can you do this?

Some Advice:

¢ Note that the program won't really calles—it will simply execute its code. This has important
implications for where on the stack you want to place youlkémo

Level 2: Biology (15 pts)

Here Dr. Evil has really started making things tricky. It vitato to simply execute code that's already there,
you will need to inject some of your own.

A much more sophisticated form of buffer attack involvesying a string that encodes actual machine in-
structions. The exploit string then overwrites the retusmfer with the starting address of these instructions
on the stack. When the calling function (in this cage buf) executes itg et instruction, the program
will start executing the instructions on the stack rathantheturning. With this form of attack, you can get
the program to do almost anything. The code you place on #uol & called thexploitcode. This style of
attack is tricky, though, because you must get machine cottetbe stack and set the return pointer to the
start of this code.

Within the filebuf bonb there is a functiormes having the following C code:

i nt gl obal password = O;

voi d aes(int val)

{
if (global _password == cookie) {
printf("Aes!: You set global password to Ox%\n", gl obal password);
val i date(2);
} else
printf("Msfire: global_password = Ox%\n", gl obal password);
exit(0);
}

Similar to Levels 0 and 1, your task is to ggiFBOMB to execute the code fares rather than returning to
t est . Before this, however, you must set global variadpleobal _val ue to your userid’s cookie. Your

exploit code should sajl obal _val ue, push the address afes on the stack, and then execute &t
instruction to cause a jump to the code &ms.

Some Advice:

e YOu can useGDB to get the information you need to construct your exploiingtr Set a break-
point within get buf and run to this breakpoint. Determine parameters such aadteess of
gl obal _val ue and the location of the buffer.

e Determining the byte encoding of instruction sequencesanghs tedious and prone to errors. You
can let tools do all of the work by writing an assembly code €idataining the instructions and
data you want to put on the stack. Assemble this file witlt - m32 - ¢ and disassemble it with
obj dunp -d. You should be able to get the exact byte sequence that ybtypd at the prompt.
(A brief example of how to do this is included at the end of thigeup.)

e Keep in mind that your exploit string depends on your maghipar compiler, and even your userid’s
cookie. Do all of your work on Triton, and make sure you ingube proper userid on the command
line to BUFBOMB.

e Watch your use of address modes when writing assembly codee tRatnmovl $0x4, %eax
moves thevalue0x00000004 into register¥eax; whereasrovl 0x4, %eax moves the value
at memory locatiorOx00000004 into %gax. Since that memory location is usually undefined, the
second instruction will cause a segfault!

e Do not attempt to use eitherjanp or acal | instruction to jump to the code fares. These
instructions uses PC-relative addressing, which is veckytrto set up correctly. Instead, push an
address on the stack and useitled instruction.

Level 3: Physics (20 pts)

So far we've managed to foil Dr. Evil's encryption schemeschysing the program to jump to the code for
some other function, which then causes the program to exdta Result, it was acceptable to use exploit
strings that corrupt the stack, overwriting saved values.

This time, however, Dr. Evil has constructed his progranhghat it must still be running after the window
where your exploit can run.

The most sophisticated form of buffer overflow attack catiseprogram to execute some exploit code that
changes the program’s register/memory state, but makgsdlgeam return to the original calling function
(t est in this case). The calling function is oblivious to the altad his style of attack is tricky, though,
since you must: 1) get machine code onto the stack, 2) seethrpointer to the start of this code, and 3)
undo any corruptions made to the stack state.

Your job for this level is to supply an exploit string that ixdhuseget buf to return your cookie back to

t est, rather than the value 1. You can see in the codd st that this will cause the program to go
“Boonl .” Your exploit code should set your cookie as the return @ahestore any corrupted state, push
the correct return location on the stack, and executetainstruction to really return tbest .

Some Advice:

e You can usesDB to get the information you need to construct your exploingtr Set a breakpoint
within get buf and run to this breakpoint. Determine parameters such asathesl return address.

e Determining the byte encoding of instruction sequencesanghs tedious and prone to errors. You
can let tools do all of the work by writing an assembly codediataining the instructions and data
you want to put on the stack. Assemble this file witbc and disassemble it witbBJDUMP. You
should be able to get the exact byte sequence that you wél &ayphe prompt. (A brief example of
how to do this is included at the end of this writeup.)

e Keep in mind that your exploit string depends on your macghyoar compiler, and even your userid’s
cookie. Do all of your work on Triton, and make sure you ingube proper userid on the command
line to BUFBOMB.

Once you complete this level, pause to reflect on what you hagemplished. You caused a program to
execute machine code of your own design. You have done saufiiciently stealthy way that the program
did not realize that anything was amiss.

Level 4. Mathematics (10 pts)

Please note: You'll need to use ther,” command-line flag in order to run this stage.

From one run to another, especially by different users, daetestack positions used by a given procedure
will vary. One reason for this variation is that the valuesabbfenvironment variables are placed near the
base of the stack when a program starts executing. Envinohwagiables are stored as strings, requiring
different amounts of storage depending on their values.s;Tthe stack space allocated for a given user
depends on the settings of his or her environment varialfi#ack positions also differ when running a

program undeGDB, sinceGDB uses stack space for some of its own state.

In the code that callget buf , Dr. Evil, through a series of unrelated programming mistakncorporated
features that stabilize the stack, so that the positiogeaifbuf 's stack frame will be consistent between
runs. This made it possible for you to write an exploit stilkmpwing the exact starting addresshaff . If
you tried to use such an exploit on a normal program, you wbnttithat it works some times, but it causes
segmentation faults at other times.

Unfortunately for you, Dr. Evil was greatly inspired by yalegant solutions to difficult mathematical prob-
lems and rewrote most of his code. Along the way, in a glorimaesnent of enlightenment, he implemented
stack destabilizing features, making stack positions ésmnstable than they normally are.

When you runsursoMB with the command line flag-"n,” it will run in “Nirvana” mode. Rather than
calling the functiorget buf , the program calls a slightly different functigret buf n:

[+ Buffer size for getbufn */
#defi ne NI RVANA BUFFER S| ZE 512

i nt getbufn()

char buf[Nl RVANA BUFFER_SI ZE] ;
Get s(buf);
return 1;

}

This function is similar toget buf , except that it has a buffer of 512 characters. You will négsl &d-
ditional space to create a reliable exploit. The code thidg gt buf n first allocates a random amount
of storage on the stack, such that if you sample the valu#edfp during two successive executions of
get buf n, you would find they differ by as much as240.

In addition, when run in Nirvana modeFBOMB requires you to supply your string 5 times, and it will
executeget buf n 5 times, each with a different stack offset. Your exploitrgirmust make it return your
cookie each of these times.

Your task is identical to the task for the Physics level. Oagain, your job for this level is to supply an
exploit string that will causget buf n to return your cookie back to test, rather than the value 11 ¢4n
see in the code for test that this will cause the program tok&BOOM .” Your exploit code should set
your cookie as the return value, restore any corrupted, gtateh the correct return location on the stack,
and execute aet instruction to really return tbest n.

Some Advice:

e You can use the programex2rRAw to send multiple copies of your exploit string. If you have a
single copy in the filexpl oi t . t xt , then you can use the following command:

uni x> cat exploit.txt | ./hex2raw -n | ./bufbonb -n -u ymr

You must use the same string for all 5 executiong®ff buf n. Otherwise it will fail the testing code
used by our grading server.

e The trick is to make use of theop instruction. It is encoded with a single byte (cae90). It may
be useful to read about "nop sleds” on page 262 of the CS:ARRBmOOkK.

Bonus level: Alchemy (10 pts)

Hack the buflab server and assign yourself a higher scoregson) inbuf | ab- updat e. pl

To do this, think about how buflab service might double chéel you entered the correct strings for any
phase... Can you exploit this design?

L ogistical Notes

Handin occurs to the grading server whenever you correcilyesa leveland use the- s option. Upon
receiving your solution, the server will validate your striand update the Buffer Lab scoreboard Web page,
which you can view by pointing your Web browser at

10

http://triton. mathcs. enory. edu/

You should be sure to check this page after your submissiorat@ sure your string has been validated. (If
you really solved the level, your strirghouldbe valid.)

Note that each level is graded individually. You do not needd them in the specified order, but you will
get credit only for the levels for which the server receivegalid message. You can check the Buffer Lab
scoreboard to see how far you've gotten.

The grading server creates the scoreboard by using thé¢ Hasests it has for each phase.
Good luck and have fun!

Generating Byte Codes

UsingGccas an assembler amJDUMP as a disassembler makes it convenient to generate the tnds co
for instruction sequences. For example, suppose we writke @Xfianpl e. S containing the following
assembly code:

Exanpl e of hand-generated assenbly code

push $0xabcdef # Push val ue onto stack

add $17, %eax # Add 17 to Y%ax

.align 4 # Following will be aligned on nultiple of 4
.1 ong Oxf edcba98 # A 4-byte constant

The code can contain a mixture of instructions and data. Wingtto the right of a#' character is a
comment.

We can now assemble and disassemble this file:

uni x> gcc -nB2 -c exanple.S
uni x> obj dunp -d exanple.o > exanple.d

The generated filexanpl e. d contains the following lines

0: 68 ef cd ab 00 push $0xabcdef

5: 83 c0 11 add $0x11, Y%eax
8: 98 cwt |

9: ba . byt e Oxba

a: dc fe fdivr %t, %st(6)

Each line shows a single instruction. The number on theneftates the starting address (starting with 0),
while the hex digits after the * character indicate the byte codes for the instruction. sTkee can see that
the instructiorpush $0x ABCDEF has hex-formatted byte co@8 ef cd ab 00.

Starting at address 8, the disassembler gets confuseiésltdrinterpret the bytes in the figecanpl e. o as
instructions, but these bytes actually correspond to dddée, however, that if we read off the 4 bytes start-
ing at address 8 we ge®#8 ba dc fe. This is a byte-reversed version of the data woxd-EDCBA98.

11

This byte reversal represents the proper way to supply theskas a string, since a little endian machine
lists the least significant byte first.

Finally, we can read off the byte sequence for our code as:

68 ef cd ab 00 83 cO 11 98 ba dc fe

This string can then be passed throwfx2RAW to generate a proper input string we can giveW&EBOMB.
Alternatively, we can edit example.d to look like this:

68 ef cd ab 00 /* push $0xabcdef =/
83 c0 11 /+ add $0x11, %eax */

98

ba dc fe

which is also a valid input we can pass througgx 2RAW before sending tBUFBOMB.

12

